As efforts associated with the exploration of multi-principal element alloys (MPEAs) using computational and data-intensive methods continue to rise, experimental realization and validation of the predicted material properties require high-throughput and combinatorial synthesis of these alloys. While additive manufacturing (AM) has emerged as the leading pathway to address these challenges and for rapid prototyping through part fabrication, extensive research on developing and understanding the process-structure-property correlations is imminent. In particular, directed energy deposition (DED) based AM of MPEAs holds great promise because of the boundless compositional variations possible for functionally graded component manufacturing as well as surface cladding. We analyze the recent efforts in DED of MPEAs, the microstructural evolution during the laser metal deposition of various transition and refractory elements, and assess the effects of various processing parameters on the material phase and properties. Our efforts suggest that the development of robust predictive approaches for process parameter selection and modifying the synthesis mechanisms are essential to enable DED platforms to repeatedly produce defect free, stable and designer MPEAs.
more »
« less
Digital Fringe Projection for Interlayer Print Defect Characterization in Directed Energy Deposition
Abstract Directed Energy Deposition (DED) is one of the main additive manufacturing (AM) families, enabling the fabrication of multi-material parts with high material addition rates. However, the incremental nature of DED fabrication makes it prone to local defect formation due to process condition fluctuations. Known for its rapid and precise 3D surface measurement capabilities, digital fringe projection (DFP) was previously demonstrated in process monitoring for powder bed AM. This study brings DFP to the DED process through development of a custom motor stage system and validates its effectiveness in assessing surface topography and build height measurement. Measurements were taken on both correctly deposited builds and builds with off-nominal deposition conditions, where the system was able to detect pitting as small as 0.425 mm in the lateral size and 0.154 mm in depth in the case of reduced laser energy. This work paves the way for future machine learning-enabled interlayer defect identification, classification, and healing via altering subsequent processing settings.
more »
« less
- Award ID(s):
- 2216298
- PAR ID:
- 10544529
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8788-2
- Format(s):
- Medium: X
- Location:
- Seattle, Washington, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
M. Wiercigroch, editof-in-chief (Ed.)Additive manufacturing (AM) is known to generate large magnitudes of residual stresses (RS) within builds due to steep and localized thermal gradients. In the current state of commercial AM technology, manufacturers generally perform heat treatments in effort to reduce the generated RS and its detrimental effects on part distortion and in-service failure. Computational models that effectively simulate the deposition process can provide valuable insights to improve RS distributions. Accordingly, it is common to employ Computational fluid dynamics (CFD) models or finite element (FE) models. While CFD can predict geometric and thermal fluid behavior, it cannot predict the structural response (e.g., stress–strain) behavior. On the other hand, an FE model can predict mechanical behavior, but it lacks the ability to predict geometric and fluid behavior. Thus, an effectively integrated thermofluidic–thermomechanical modeling framework that exploits the benefits of both techniques while avoiding their respective limitations can offer valuable predictive capability for AM processes. In contrast to previously published efforts, the work herein describes a one-way coupled CFDFEA framework that abandons major simplifying assumptions, such as geometric steady-state conditions, the absence of material plasticity, and the lack of detailed RS evolution/accumulation during deposition, as well as insufficient validation of results. The presented framework is demonstrated for a directed energy deposition (DED) process, and experiments are performed to validate the predicted geometry and RS profile. Both single- and double-layer stainless steel 316L builds are considered. Geometric data is acquired via 3D optical surface scans and X-ray micro-computed tomography, and residual stress is measured using neutron diffraction (ND). Comparisons between the simulations and measurements reveal that the described CFD-FEA framework is effective in capturing the coupled thermomechanical and thermofluidic behaviors of the DED process. The methodology presented is extensible to other metal AM processes, including power bed fusion and wire-feed-based AM.more » « less
-
Abstract There is an urgent need for developing collaborative process-defect modeling in metal-based additive manufacturing (AM). This mainly stems from the high volume of training data needed to develop reliable machine learning models for in-situ anomaly detection. The requirements for large data are especially challenging for small-to-medium manufacturers (SMMs), for whom collecting copious amounts of data is usually cost prohibitive. The objective of this research is to develop a secured data sharing mechanism for directed energy deposition (DED) based AM without disclosing product design information, facilitating secured data aggregation for collaborative modeling. However, one major obstacle is the privacy concerns that arise from data sharing, since AM process data contain confidential design information, such as the printing path. The proposed adaptive design de-identification for additive manufacturing (ADDAM) methodology integrates AM process knowledge into an adaptive de-identification procedure to mask the printing trajectory information in metal-based AM thermal history, which otherwise discloses substantial printing path information. This adaptive approach applies a flexible data privacy level to each thermal image based on its similarity with the other images, facilitating better data utility preservation while protecting data privacy. A real-world case study was used to validate the proposed method based on the fabrication of two cylindrical parts using a DED process. These results are expressed as a Pareto optimal solution, demonstrating significant improvements in privacy gain and minimal utility loss. The proposed method can facilitate privacy improvements of up to 30% with as little as 0% losses in dataset utility after de-identification.more » « less
-
Abstract In collaborative additive manufacturing (AM), sharing process data across multiple users can provide small to medium-sized manufacturers (SMMs) with enlarged training data for part certification, facilitating accelerated adoption of metal-based AM technologies. The aggregated data can be used to develop a process-defect model that is more precise, reliable, and adaptable. However, the AM process data often contains printing path trajectory information that can significantly jeopardize intellectual property (IP) protection when shared among different users. In this study, a new adaptive AM data deidentification method is proposed that aims to mask the printing trajectory information in the AM process data in the form of melt pool images. This approach integrates stochastic image augmentation (SIA) and adaptive surrogate image generation (ASIG) via tracking melt pool geometric changes to achieve a tradeoff between AM process data privacy and utility. As a result, surrogate melt pool images are generated with perturbed printing directions. In addition, a convolutional neural network (CNN) classifier is used to evaluate the proposed method regarding privacy gain (i.e., changes in the accuracy of identifying printing orientations) and utility loss (i.e., changes in the ability of detecting process anomalies). The proposed method is validated using data collected from two cylindrical specimens using the directed energy deposition (DED) process. The case study results show that the deidentified dataset significantly improved privacy preservation while sacrificing little data utility, once shared on the cloud-based AM system for collaborative process-defect modeling.more » « less
-
Directed energy deposition (DED) additive manufacturing (AM) enables the production of components at a high deposition rate. For certain alloys, interpass temperature requirements are imposed to control heat accumulation and microstructure transformation, as well as to minimize distortion under varying thermal conditions. A typical strategy to comply with interpass temperature constraints is to increase the interpass dwell time, which can lead to an increase in the total deposition time. This study aims to develop an optimized tool path that ensures interpass temperature compliance and reduces overall deposition time relative to the conventional sequential deposition path during the DED process. To evaluate this, a compact analytic thermal model is used to predict the thermal history during laser-based directed energy deposition (DED-LB/M) hot wire (lateral feeding) of ER100S-G, a welding wire equivalent to high yield steel. A greedy algorithm, integrated with the thermal model, identifies a tool path order that ensures compliance with the interpass requirement of the material while minimizing interpass dwell time and, thus, the total deposition time. The proposed path planning algorithm is validated experimentally with in situ temperature measurements comparing parts fabricated with the baseline (sequential) deposition path to the modified path (resulting from the greedy algorithm). The experimental results of this study demonstrate that the proposed path planning algorithm can reduce the deposition time by 9.2% for parts of dimensions 66 mm × 73 mm × 16.5 mm, comprising 15 layers and a total of 300 beads. Predictions based on the proposed path planning algorithm indicate that additional reductions in deposition time can be achieved for larger parts. Specifically, increasing the (experimentally validated) part dimension perpendicular to the deposition direction by five-times is expected to result in a 40% reduction in deposition time.more » « less
An official website of the United States government

