skip to main content


This content will become publicly available on June 24, 2025

Title: iPrism: Characterize and Mitigate Risk by Quantifying Change in Escape Routes
This paper addresses the challenge of ensuring the safety of autonomous vehicles (AVs, also called ego actors) in realworld scenarios where AVs are constantly interacting with other actors. To address this challenge, we introduce iPrism which incorporates a new risk metric – the Safety-Threat Indicator (STI). Inspired by how experienced human drivers proactively mitigate hazardous situations, STI quantifies actor-related risks by measuring the changes in escape routes available to the ego actor. To actively mitigate the risk quantified by STI and avert accidents, iPrism also incorporates a reinforcement learning (RL) algorithm (referred to as the Safety-hazard Mitigation Controller (SMC)) that learns and implements optimal risk mitigation policies. Our evaluation of the success of the SMC is based on over 4800 NHTSA-based safety-critical scenarios. The results show that (i) STI provides up to 4.9× longer lead-time for-mitigating-accidents compared to widely-used safety and planner-centric metrics, (ii) SMC significantly reduces accidents by 37% to 98% compared to a baseline Learning-by-Cheating (LBC) agent, and (iii) in comparison with available state-of-the-art safety hazard mitigation agents, SMC prevents up to 72.7% of accidents that the selected agents are unable to avoid. All code, model weights, and evaluation scenarios and pipelines used in this paper are available at: https://zenodo.org/doi/10.5281/ zenodo.10279653.  more » « less
Award ID(s):
2029049
PAR ID:
10546461
Author(s) / Creator(s):
; ; ; ;
Corporate Creator(s):
Editor(s):
nd
Publisher / Repository:
Institute of Electrical and Electronics Engineers
Date Published:
Edition / Version:
1
Volume:
1
Issue:
1
ISBN:
979-8-3503-4105-8
Page Range / eLocation ID:
142 to 155
Subject(s) / Keyword(s):
Autonomous Vehicles Autonomous Driving Safety Risk Assessment Safety-hazard Mitigation
Format(s):
Medium: X Size: 962 kb Other: pdf
Size(s):
962 kb
Location:
Brisbane, Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. This article deals with household-level flood risk mitigation. We present an agent-based modeling framework to simulate the mechanism of natural hazard and human interactions, to allow evaluation of community flood risk, and to predict various adaptation outcomes. The framework considers each household as an autonomous, yet socially connected, agent. A Beta-Bernoulli Bayesian learning model is first applied to measure changes of agents' risk perceptions in response to stochastic storm surges. Then the risk appraisal behaviors of agents, as a function of willingness-to-pay for flood insurance, are measured. Using Miami-Dade County, Florida as a case study, we simulated four scenarios to evaluate the outcomes of alternative adaptation strategies. Results show that community damage decreases significantly after a few years when agents become cognizant of flood risks. Compared to insurance policies with pre-Flood Insurance Rate Maps subsidies, risk-based insurance policies are more effective in promoting community resilience, but it will decrease motivations to purchase flood insurance, especially for households outside of high-risk areas. We evaluated vital model parameters using a local sensitivity analysis. Simulation results demonstrate the importance of an integrated adaptation strategy in community flood risk management. 
    more » « less
  2. A. Ghate, K. Krishnaiyer (Ed.)
    Deaths due to road traffic accidents are one of the leading causes of death in the United States. Furthermore, the economic impact of road traffic accidents accounts for about 3% of the United States' annual gross domestic product (GDP). In the past decade, extensive research has focused on autonomous vehicles (AVs). This technology is said to help prevent traffic accidents while promoting road traffic safety. This study aims to investigate the safety performance of AVs and identify the significant risk factors associated with the AV collisions. The study considers more than 200 crashes involving AVs and includes vehicle factors, environmental factors, collision type and crash severity. Multinomial logistic regression was conducted with collision type. The results showed no statistically significant risk factors to crash severity. However, movement preceding to collision contributes significantly to collision type. When both vehicles are moving, there's a higher likelihood of an angled collision, 47% to be exact. The other scenario which demonstrates a high probability of an angled collision is when the AV vehicle is not moving while the other is moving. The highest probability for a rear-end collision to occur is when the AV vehicle is not moving while the other is moving. This scenario makes up 55% of the entire rear-end collisions. As for the second-highest proportion, both vehicles moving, it consists of 42%. The research shall help reduce AV involved collisions and increase driving safety. 
    more » « less
  3. Autonomous vehicles (AV) hold great potential to increase road safety, reduce traffic congestion, and improve mobility systems. However, the deployment of AVs introduces new liability challenges when they are involved in car accidents. A new legal framework should be developed to tackle such a challenge. This paper proposes a legal framework, incorporating liability rules to rear-end crashes in mixed-traffic platoons with AVs and human-propelled vehicles (HV). We leverage a matrix game approach to understand interactions among players whose utility captures crash loss for drivers according to liability rules. We investigate how liability rules may impact the game equilibrium between vehicles and whether human drivers’ moral hazards arise if liability is not designed properly. We find that compared to the no-fault liability rule, contributory and comparative rules make road users have incentives to execute a smaller reaction time to improve road safety. There exists moral hazards for human drivers when risk-averse AV players are in the car platoon.

     
    more » « less
  4. Self-driving autonomous vehicles (AVs) have recently gained popularity as a research topic. The safety of AVs is exceptionally important as failure in the design of an AV could lead to catastrophic consequences. AV systems are highly heterogeneous with many different and complex components, so it is difficult to perform end-to-end testing. One solution to this dilemma is to evaluate AVs using simulated racing competition. In this thesis, we present a simulated autonomous racing competition, Generalized RAcing Intelligence Competition (GRAIC). To compete in GRAIC, participants need to submit their controller files which are deployed on a racing ego-vehicle on different race tracks. To evaluate the submitted controller, we also developed a testing pipeline, Autonomous System Operations (AutOps). AutOps is an automated, scalable, and fair testing pipeline developed using software engineering techniques such as continuous integration, containerization, and serverless computing. In order to evaluate the submitted controller in non-trivial circumstances, we populate the race tracks with scenarios, which are pre-defined traffic situations commonly seen in the real road. We present a dynamic scenario testing strategy that generates new scenarios based on results of the ego-vehicle passing through previous scenarios. 
    more » « less
  5. Despite the potential of autonomous vehicles (AV) to improve traffic efficiency and safety, many studies have shown that traffic accidents in a hybrid traffic environment where both AV and human-driven vehicles (HVs) are present are inevitable because of the unpredictability of HVs. Given that eliminating accidents is impossible, an achievable goal is to design AVs in a way so that they will not be blamed for any accident in which they are involved in. In this paper, we propose BlaFT Rules – or Blame-Free hybrid Traffic motion planning Rules. An AV following BlaFT Rules is designed to be cooperative with HVs as well as other AVs, and will not be blamed for accidents in a structured road environment. We provide proofs that no accidents will happen if all AVs are using a BlaFT Rules conforming motion planner, and that an AV using BlaFT Rules will be blame-free even if it is involved in a collision in hybrid traffic. We implemented a motion planning algorithm that conforms to BlaFT Rules called BlaFT. We instantiated scores of BlaFT controlled AVs and HVs in an urban roadscape loop in the SUMO simulator and show that over time that as the percentage of BlaFT vehicles increases, the traffic becomes safer even with HVs involved. Adding BlaFT vehicles increases the efficiency of traffic as a whole by up to 34% over HVs alone. 
    more » « less