Additive manufacturing (AM) of metals often results in parts with unfavorable mechanical properties. Laser peening (LP) is a high strain rate mechanical surface treatment that hammers a workpiece and induces favorable mechanical properties. Peening strain hardens a surface and imparts compressive residual stresses improving the mechanical properties of a material. This work investigates the role of LP on layer-by-layer processing of 3D printed metals using finite element analysis. The objective is to understand temporal and spatial residual stress development after thermal and mechanical cancellation caused by cyclically coupling printing and peening. Results indicate layer peening frequency is a critical process parameter affecting residual stress redistribution and highly interdependent on the heat generated by the printing process. Optimum hybrid process conditions were found to exists that favorably enhance mechanical properties. With this study, hybrid-AM has ushered in the next evolutionary step in AM and has the potential to profoundly change the way high value metal goods are manufactured.
more »
« less
Analytical modeling of residual stress formation in hybrid additive manufacturing
Current methods for modeling hybrid additive manufacturing are computationally inefficient for use in optimization algorithms. An analytical tool is needed to understand how cycling thermal and mechanical loads via 3D printing and cold working reshapes cumulative residual stress within a build volume. A novel analytical model was developed that couples beam theory and superposition to rapidly predict cumulative residual stress. Modeling results were experimentally validated on AlSi10Mg after laser shock peening prescribed layers during powder bed fusion. Results demonstrated a vertically translating heat-affected zone, and the use of beam-based superposition accurately accounted for residual stress redistribution from cyclic printing and peening.
more »
« less
- Award ID(s):
- 2318705
- PAR ID:
- 10547457
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- CIRP Annals
- Volume:
- 73
- Issue:
- 1
- ISSN:
- 0007-8506
- Page Range / eLocation ID:
- 197 to 200
- Subject(s) / Keyword(s):
- Hybrid additive manufacturing Residual stress Modelling
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Additive manufactured (AM) magnesium alloys corrode rapidly due to tensile stress and coarse microstructures. Cyclically combining (hybridizing) additive manufacturing with interlayer ultrasonic peening was proposed as a solution to improve corrosion resistance of additive manufactured magnesium WE43 alloy through strengthening mechanisms and compressive residual stress. Applying interlayer peening work hardened discrete layers and formed a glocal integrity of regional grain refinement and subsurface compressive residual stress barriers. Tensile residual stress that typically accelerates corrosion decreased 90%. Results showed time-resolved control over corrosion was attainable by interlayer peening, and local corrosion within print cells decreased 57% with respect to as-printed WE43.more » « less
-
Abstract This work studies the use of laser shock peening (LSP) to improve back stress in additively manufactured (AM) 316L parts. Unusual hardening behavior in AM metal due to tortuous microstructure and strong texture poses additional design challenges. Anisotropic mechanical behavior complicates application for mechanical design because 3D printed parts will behave differently than traditionally manufactured parts under the same loading conditions. The prevalence of back-stress hardening or the Bauschinger effect causes reduced fatigue life under random loading and dissipates beneficial compressive residual stresses that prevent crack propagation. LSP is known to improve fatigue life by inducing compressive residual stress and has been applied with promising results to AM metal parts. It is here demonstrated that LSP may also be used as a tool for mitigating tensile back-stress hardening in AM parts, thereby reducing anisotropic hardening behavior and improving design use. It is also shown that the method of application of LSP to additively manufactured parts is key for achieving effective back-stress reduction. Back stress is extracted from additively manufactured dog bone samples built in both XY and XZ directions using hysteresis tensile. Both LSPed and as-built conditions are tested and compared, showing that LSPed samples exhibit a significant reduction to back stress when the laser processing is applied to the sample along the build direction. Electron backscatter diffraction (EBSD) performed under these conditions elucidates how grain morphologies and texture contribute to the observed improvement. Crystal plasticity finite element (CPFE) modeling develops insights as to the mechanisms by which this reduction is achieved in comparison with EBSD results. In particular, the difference in plastic behavior across build orientations of identified crystal planes and grain families are shown to impact the degree of LSP-induced back-stress reduction that is sustained through tensile loading.more » « less
-
The objective of this research was to quantify the change in magnitude and depth of compressive residual stress (CRS) retained in the subsurface by interlayer coldworking when subjected to localized annealing that superimposed tensile stress. The approach was to hybridize additive manufacturing of AlSi10Mg alloy by coupling powder bed fusion (PBF) with laser shock peening (LSP) and characterize the resultant residual stress state by the hole-drilling method. The research found localized annealing from layer deposition formed two distinct regions in the subsurface, which was driven by localized and bulk stress redistribution. The experiments also showed that residual stress redistribution from LSP reached 550 µm into the subsurface, whereas local annealing from the deposition of layers extended only to a depth of 160 µm. Hence, compressive stress imparted by LSP was not entirely canceled by local annealing from PBF. This work provides the first quantification of the stress state response of hybrid additively manufactured parts to thermal loads and is fundamental to improving part performance through increased functional reliability, fatigue life, and corrosion resistance.more » « less
-
The transverse strength of fiber-reinforced composites is a matrix-dominated property whose accurate prediction iscrucial to designing and optimizing efficient, lightweight structures. State-of-the-art analytical models for compositestrength predictions do not account for fiber distribution, orientation, and curing-induced residual stress that greatlyinfluence damage initiation and failure propagation at the microscale. This work presents a novel methodology to develop an analytical solution for transverse composite strength based on computational micromechanics that enables the modeling of stress concentration due to representative volume elements (RVE) morphology and residual stress. Finiteelement simulations are used to model statistical samples of composite microstructures, generate stress-strain curves,and correlate statistical descriptors of the microscale to stress concentration factors to predict transverse strength as a function of fiber volume fraction. Tensile tests of thin plies validated this approach for carbon- and glass-reinforced composites showing promise to obtain a generalized analytical model for transverse composite strength prediction.more » « less
An official website of the United States government

