Abstract Study ObjectivesEvaluate wrist-placed accelerometry predicted heartrate compared to electrocardiogram (ECG) heartrate in children during sleep. MethodsChildren (n = 82, 61% male, 43.9% black) wore a wrist-placed Apple Watch Series 7 (AWS7) and ActiGraph GT9X during a polysomnogram. Three-Axis accelerometry data was extracted from AWS7 and the GT9X. Accelerometry heartrate estimates were derived from jerk (the rate of acceleration change), computed using the peak magnitude frequency in short time Fourier Transforms of Hilbert transformed jerk computed from acceleration magnitude. Heartrates from ECG traces were estimated from R-R intervals using R-pulse detection. Lin’s concordance correlation coefficient (CCC), mean absolute error (MAE), and mean absolute percent error (MAPE) assessed agreement with ECG estimated heart rate. Secondary analyses explored agreement by polysomnography sleep stage and a signal quality metric. ResultsThe developed scripts are available on Github. For the GT9X, CCC was poor at −0.11 and MAE and MAPE were high at 16.8 (SD = 14.2) beats/minute and 20.4% (SD = 18.5%). For AWS7, CCC was moderate at 0.61 while MAE and MAPE were lower at 6.4 (SD = 9.9) beats/minute and 7.3% (SD = 10.3%). Accelerometry estimated heartrate for AWS7 was more closely related to ECG heartrate during N2, N3 and REM sleep than lights on, wake, and N1 and when signal quality was high. These patterns were not evident for the GT9X. ConclusionsRaw accelerometry data extracted from AWS7, but not the GT9X, can be used to estimate heartrate in children while they sleep. Future work is needed to explore the sources (i.e. hardware, software, etc.) of the GT9X’s poor performance.
more »
« less
From Sleep Patterns to Heart Rhythms: Predicting Atrial Fibrillation from Overnight Polysomnograms
Abstract BackgroundAtrial fibrillation (AF) is often asymptomatic and thus under-observed. Given the high risks of stroke and heart failure among patients with AF, early prediction and effective management are crucial. Importantly, obstructive sleep apnea is highly prevalent among AF patients (60–90%); therefore, electrocardiogram (ECG) analysis from polysomnography (PSG), a standard diagnostic tool for subjects with suspected sleep apnea, presents a unique opportunity for the early prediction of AF. Our goal is to identify individuals at a high risk of developing AF in the future from a single-lead ECG recorded during standard PSGs. MethodsWe analyzed 18,782 single-lead ECG recordings from 13,609 subjects at Massachusetts General Hospital, identifying AF presence using ICD-9/10 codes in medical records. Our dataset comprises 15,913 recordings without a medical record for AF and 2,056 recordings from patients who were first diagnosed with AF between 1 day to 15 years after the PSG recording. The PSG data were partitioned into training, validation, and test cohorts. In the first phase, a signal quality index (SQI) was calculated in 30-second windows and those with SQI<0.95 were removed. From each remaining window, 150 hand-crafted features were extracted from time, frequency, time-frequency domains, and phase-space reconstructions of the ECG. A compilation of 12 statistical features summarized these window-specific features per recording, resulting in 1,800 features. We then updated a pre-trained deep neural network and data from the PhysioNet Challenge 2021 using transfer-learning to discriminate between recordings with and without AF using the same Challenge data. The model was applied to the PSG ECGs in 16-second windows to generate the probability of AF for each window. From the resultant probability sequence, 13 statistical features were extracted. Subsequently, we trained a shallow neural network to predict future AF using the extracted ECG and probability features. ResultsOn the test set, our model demonstrated a sensitivity of 0.67, specificity of 0.81, and precision of 0.3 for predicting AF. Further, survival analysis for AF outcomes, using the log-rank test, revealed a hazard ratio of 8.36 (p-value of 1.93 × 10−52). ConclusionsOur proposed ECG analysis method, utilizing overnight PSG data, shows promise in AF prediction despite a modest precision indicating the presence of false positive cases. This approach could potentially enable low-cost screening and proactive treatment for high-risk patients. Ongoing refinement, such as integrating additional physiological parameters could significantly reduce false positives, enhancing its clinical utility and accuracy.
more »
« less
- Award ID(s):
- 2014438
- PAR ID:
- 10547654
- Publisher / Repository:
- medRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- medRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Grewal, Harpreet Singh (Ed.)Study objectiveThis study aimed to prospectively validate the performance of an artificially augmented home sleep apnea testing device (WVU-device) and its patented technology. MethodologyThe WVU-device, utilizing patent pending (US 20210001122A) technology and an algorithm derived from cardio-pulmonary physiological parameters, comorbidities, and anthropological information was prospectively compared with a commercially available and Center for Medicare and Medicaid Services (CMS) approved home sleep apnea testing (HSAT) device. The WVU-device and the HSAT device were applied on separate hands of the patient during a single night study. The oxygen desaturation index (ODI) obtained from the WVU-device was compared to the respiratory event index (REI) derived from the HSAT device. ResultsA total of 78 consecutive patients were included in the prospective study. Of the 78 patients, 38 (48%) were women and 9 (12%) had a Fitzpatrick score of 3 or higher. The ODI obtained from the WVU-device corelated well with the HSAT device, and no significant bias was observed in the Bland-Altman curve. The accuracy for ODI > = 5 and REI > = 5 was 87%, for ODI> = 15 and REI > = 15 was 89% and for ODI> = 30 and REI of > = 30 was 95%. The sensitivity and specificity for these ODI /REI cut-offs were 0.92 and 0.78, 0.91 and 0.86, and 0.94 and 0.95, respectively. ConclusionThe WVU-device demonstrated good accuracy in predicting REI when compared to an approved HSAT device, even in patients with darker skin tones.more » « less
-
Objectives: We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which features can be computed. Materials and methods: Using a large-scale, retrospective database of EEG recordings and matching clinical reports, we were able to construct a dataset of 1385 healthy subjects and 374 stroke patients. With subjects often producing more than one recording per session, the final dataset consisted of 2401 EEG recordings (63% healthy, 37% stroke). Results: Using a rich set of features encompassing both the spectral and temporal domains, our model yielded an AUC of 0.95, with a sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings per subject in the training set boosted sensitivity by 7%, attributable to a more balanced dataset. Conclusions: Our work demonstrates strong potential for the use of EEG in conjunction with machine learning methods to distinguish stroke patients from healthy subjects. Our approach provides a solution that is not only timely (3-minutes recording time) but also highly precise and accurate (AUC: 0.95). Keywords: Electroencephalogram (EEG); Feature engineering; Ischemic stroke; Large vessel occlusion; Machine learning; Prehospital stroke scale.more » « less
-
Abstract INTRODUCTIONIdentifying mild cognitive impairment (MCI) patients at risk for dementia could facilitate early interventions. Using electronic health records (EHRs), we developed a model to predict MCI to all‐cause dementia (ACD) conversion at 5 years. METHODSCox proportional hazards model was used to identify predictors of ACD conversion from EHR data in veterans with MCI. Model performance (area under the receiver operating characteristic curve [AUC] and Brier score) was evaluated on a held‐out data subset. RESULTSOf 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had good discriminative performance (AUC 0.73 [95% confidence interval (CI) 0.72–0.74]), and calibration (Brier score 0.18 [95% CI 0.17–0.18]). Age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors, while body mass index, alcohol abuse, and sleep apnea were protective factors. DISCUSSIONEHR‐based prediction model had good performance in identifying 5‐year MCI to ACD conversion and has potential to assist triaging of at‐risk patients. HighlightsOf 59,782 veterans with mild cognitive impairment (MCI), 15,420 (25.8%) converted to all‐cause dementia within 5 years.Electronic health record prediction models demonstrated good performance (area under the receiver operating characteristic curve 0.73; Brier 0.18).Age and vascular‐related morbidities were predictors of dementia conversion.Synthetic data was comparable to real data in modeling MCI to dementia conversion. Key PointsAn electronic health record–based model using demographic and co‐morbidity data had good performance in identifying veterans who convert from mild cognitive impairment (MCI) to all‐cause dementia (ACD) within 5 years.Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension, and diabetes were risk factors for 5‐year conversion from MCI to ACD.High body mass index, alcohol abuse, and sleep apnea were protective factors for 5‐year conversion from MCI to ACD.Models using synthetic data, analogs of real patient data that retain the distribution, density, and covariance between variables of real patient data but are not attributable to any specific patient, performed just as well as models using real patient data. This could have significant implications in facilitating widely distributed computing of health‐care data with minimized patient privacy concern that could accelerate scientific discoveries.more » « less
-
Wearable devices have become commonplace tools for tracking behavioral and physiological parameters in real-world settings. Nonetheless, the practical utility of these data for clinical and research applications, such as sleep analysis, is hindered by their noisy, large-scale, and multidimensional characteristics. Here, we develop a neural network algorithm that predicts sleep stages by tracking topological features (TFs) of wearable data and model-driven clock proxies (CPs) reflecting the circadian propensity for sleep. To evaluate its accuracy, we apply it to motion and heart rate data from the Apple Watch worn by young subjects undergoing polysomnography (PSG) and compare the predicted sleep stages with the corresponding ground truth PSG records. The neural network that includes TFs and CPs along with raw wearable data as inputs shows improved performance in classifying Wake/REM/NREM sleep. For example, it shows significant improvements in identifying REM and NREM sleep (AUROC/AUPRC improvements >13% and REM/NREM accuracy improvement of 12%) compared with the neural network using only raw data inputs. We find that this improvement is mainly attributed to the heart rate TFs. To further validate our algorithm on a different population, we test it on elderly subjects from the Multi-ethnic Study of Atherosclerosis cohort. This confirms that TFs and CPs contribute to the improvements in Wake/REM/NREM classification. We next compare the performance of our algorithm with previous state-of-the-art wearable-based sleep scoring algorithms and find that our algorithm outperforms them within and across different populations. This study demonstrates the benefits of combining topological data analysis and mathematical modeling to extract hidden inputs of neural networks from puzzling wearable data.more » « less
An official website of the United States government

