skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum and classical machine learning investigation of synthesis–structure relationships in epitaxially grown wide band gap semiconductors
Several hundred plasma-assisted molecular beam epitaxy synthesis experiments of GaN and ZnO thin film crystals were organized into data sets that correlate the operating parameters selected for growth to two figures of merit: a binary determination of surface morphology, and a continuous Bragg–Williams measure of lattice ordering (S2). Quantum as well as conventional supervised machine learning algorithms were optimized and trained on the data, enabling a comparison of their generalization performance. The models displaying the best generalization performance on each data set were subsequently used to predict each figure of merit across the ZnO and GaN processing spaces.  more » « less
Award ID(s):
2003581
PAR ID:
10549056
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Link
Date Published:
Journal Name:
MRS Communications
Volume:
14
Issue:
4
ISSN:
2159-6867
Page Range / eLocation ID:
660 to 666
Subject(s) / Keyword(s):
machine learning quantum machine learning crystal growth molecular beam epitaxy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Surface acoustic wave devices have many applications in signal processing, radio frequency (RF) communications, and sensing [1]. The most common utilization of these devices is for filtering electromagnetic signals in communications systems. However, since the physical dimensions of the inter-digitated transducers (IDT) determine the frequency response, it is very difficult to attain tunable devices for programmable applications. Great effort has been made to achieve an integrated solution to this in III-V semiconductors. One such work utilizes the piezoelectric the GaN buffer layer in an AlGaN/GaN epi for acoustic propagation, while a metal-insulator-semiconductor (MIS) structure is used to tune the SAW response [2]. Unfortunately, the MIS structure results in a weak interaction only achieving a phase tunability of 0.07%. Recent work, uses thin film Zinc Oxide (ZnO) as a piezoelectric on top of n-type ZnO on GaN achieving a high tunability of. 9% [3]. In this work, we demonstrate a ZnO on AIGaN/GaN heterostructure capable of achieving high tunability as well as impacting properties of the SAW filter not previously reported. 
    more » « less
  2. The size, weight, power density, cost, and efficiency are crucial factors that should be considered when designing or employing power electronics converters for a specific application. Therefore, comparing different converters to investigate which converter provides better figures of merit at the same application and operating condition is essential. This paper uses theoretical, simulation and experimental comparisons between the two-level and multilevel converters. The DC-DC two-level buck and the flying capacitor multilevel (FCML) buck converters are chosen to carry out the theoretical, simulation and experimental prototypes when both employ Gallium Nitride (GaN) power semiconductor switches. It was found that the FCML converter inherently provides superior performance and figures of merit over both the two-level and multilevel converters. Simulation and experimental results that validate each other are provided in this paper. 
    more » « less
  3. Acoustoelectric amplification of surface acoustic waves on ZnO deposited on AlGaN/GaN Epi 
    more » « less
  4. The outstanding properties of Gallium Nitride (GaN) have enabled considerable improvements in the performance of power devices compared to traditional silicon technology, resulting in more efficient and highly compact power converters. GaN power technology has rapidly developed and is expected to gain a significant market share in an increasing number of applications in the coming years. However, despite the great progress, the performance of current GaN devices is still far from what the GaN material could potentially offer, and a significant reduction of the device on-resistance for a certain blocking voltage is needed. Conventional GaN high-electron-mobility-transistors are based on a single two-dimensional electron gas (2DEG) channel, whose trade-off between electron mobility and carrier density limits the minimum achievable sheet resistance. To overcome such limitations, GaN power devices including multiple, vertically stacked 2DEG channels have recently been proposed, showing much-reduced resistances and excellent voltage blocking capabilities for a wide range of voltage classes from 1 to 10 kV. Such devices resulted in unprecedented high-power figures of merit and exceeded the SiC material limit, unveiling the full potential of lateral GaN power devices. This Letter reviews the recent progress of GaN multi-channel power devices and explores the promising perspective of the multi-channel platform for future power devices. 
    more » « less
  5. Transparent conducting oxides, such as Ga-doped ZnO (GZO) and Al-doped ZnO (AZO) are attractive materials for high-performance plasmonic devices operating at telecommunication wavelengths. In this contribution, we compare the growth of epsilon-near-zero GZO and AZO films on sapphire by two different deposition techniques: molecular beam epitaxy (MBE) and atomic layer deposition (ALD). For MBE of GZO, a multiple buffer consisted of a high-temperature MgO layer, a low-temperature ZnO, followed by a high-temperature ZnO layer is employed to assure the crystalline quality of the GZO film. By controlling the growth parameters, including Ga doping level, VI/II ratio, substrate temperature, we are able to produce GZO films at 350 °C with electron mobility between 30 and 50 cm2/V.s, electron concentration up to 7×1020 cm-3, and resistivity down to 2.5×10-4 Ω.cm. For ALD of AZO, without using any buffer, by reducing the Al pulse duration, we are able to grow the AZO films under a large ratio of Al to Zn pulses of 1:6, which improves the activation of Al as an effective dopant. Hence AZO films with electron concentration above 7×1020 cm-3, electron mobility between 10 and 20 cm2/V.s, and resistivity below 6×10-4 Ω.cm have been obtained at 250 °C. The corresponding epsilon-near-zero point in the ALD-grown material was tuned down to 1470 nm. Our data indicate that the ALD method provides a low-temperature route to plasmonic TCOs for telecommunication wavelength range. Effect of electron mobility on optical loss and, therefore, plasmonic figure of merit is discussed. 
    more » « less