A computational investigation is presented, in conjunction with synthesis and experimental characterization, into the structural, electronic, and optical properties of layered two‐dimensional organic lead bromide perovskites. Materials based on the chiral (R/S)‐4‐fluoro‐α‐methylbenzylammonium (R/S‐FMBA), which have been shown to lead to bright room‐temperature circularly polarized luminescence, are contrasted with the similar achiral 4‐fluorobenzylammonium (FBA). Using density functional theory (DFT) with van der Waals (vdW) corrections, relaxed structures (compared with X‐ray diffraction, XRD) and optical absorption spectra (compared with experiments) are studied, as well as band structure and orbital character of transitions. A Python code is developed and provided to calculate octahedral distortions and compare DFT and XRD results, finding that vdW corrections are important for accuracy and that DFT overestimates octahedral tilt angles. (FMBA)2PbBr4shows among the largest tilt angle differences (often termed ) reported, 14°–15°, indicating strong inversion symmetry‐breaking, which enables its chiral emission. A large resulting Dresselhaus spin‐splitting effect is found. The lowest‐energy optical transitions involve the perovskite only and are polarized within the layer. This work furthers understanding of structure‐property relations with applications to optoelectronics and spintronics.
more »
« less
Enhancing Chiroptoelectronic Activity in Chiral 2D Perovskites via Chiral–Achiral Cation Mixing
Abstract Rational design of chiral two‐dimensional hybrid organic–inorganic perovskites is crucial to achieve chiroptoelecronic, spintronic, and ferroelectric applications. Here, an efficient way to manipulate the chiroptoelectronic activity of 2D lead iodide perovskites is reported by forming mixed chiral (R‐ or S‐methylbenzylammonium (R‐MBA+or S‐MBA+)) and achiral (n‐butylammonium (nBA+)) cations in the organic layer. The strongest and flipped circular dichroism signals are observed in (R/S‐MBA0.5nBA0.5)2PbI4films compared to (R/S‐MBA)2PbI4. Moreover, the (R/S‐MBA0.5nBA0.5)2PbI4films exhibit pseudo‐symmetric, unchanged circularly polarized photoluminescence peak as temperature increases. First‐principles calculations reveal that mixed chiral–achiral cations enhance the asymmetric hydrogen‐bonding interaction between the organic and inorganic layers, causing more structural distortion, thus, larger spin‐polarized band‐splitting than pure chiral cations. Temperature‐dependent powder X‐ray diffraction and pair distribution function structure studies show the compressed intralayer lattice with enlarged interlayer spacing and increased local ordering. Overall, this work demonstrates a new method to tune chiral and chiroptoelectronic properties and reveals their atomic scale structural origins.
more »
« less
- PAR ID:
- 10550026
- Publisher / Repository:
- Wiley Online Library
- Date Published:
- Journal Name:
- Advanced Optical Materials
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Translation of chirality and asymmetry across structural motifs and length scales plays a fundamental role in nature, enabling unique functionalities in contexts ranging from biological systems to synthetic materials. Here, we introduce a structural chirality transfer across the organic–inorganic interface in two-dimensional hybrid perovskites using appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer cations, R -(+)- or S -(−)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-bonding interactions with lead bromide-based layers cause symmetry-breaking helical distortions in the inorganic layers, otherwise absent when employing a racemic mixture of organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus spin-splitting in the inorganic-derived conduction band with opposite spin textures between R - and S -hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The ability to break symmetry using chirality transfer from one structural unit to another provides a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-polarization for hybrid perovskite spintronics and related applications.more » « less
-
Abstract 2D hybrid organic–inorganic perovskites are potentially promising materials as passivation layers that can enhance the efficiency and stability of perovskite photovoltaics. The ability to suppress ion transport is proposed as a stabilization mechanism, yet an effective characterization of relevant modes of halide diffusion in 2D perovskites is nascent. In light of this knowledge gap, molecular dynamics simulations with enhanced sampling and experimental validation to systematically characterize how ligand chemistry in seven (R‐NH3)2PbI4systems impacts halide diffusion, particularly in the out‐of‐plane direction is combined. It is found that increasing stiffness and length of ligands generally inhibits ion transport, while increasing ligand polarization generally enhances it. Structural and energetic analyses of the migration pathways provide quantitative explanations for these trends, which reflect aspects of the disorder of the organic layer. Overall, this mechanistic analysis greatly enhances the current understanding of halide migration in 2D hybrid organic–inorganic perovskites and yields insights that can inform the design of future passivation materials.more » « less
-
Chiral semiconductors have been recently suggested as the basic building blocks for the design of chiral optoelectronic and electronic devices for chiral emission and spintronics. Herein, we report that through the formation of a chiral/achiral heterostructure, one can develop a chiral system that integrates the merits of both chiral and achiral components for developing a demanded chiral emitter. In the R-(+)-(or S-(−)-)1-(1-naphthyl)-ethylammonium lead bromide/CsPbBr3 heterostructure, we show that the photoluminescence of CsPbBr3 carries a degree of circular polarization of around 1% at room temperature. It is explained that such chiral emission is enabled through the chiral self-trapped exitonic absorption of R-(+)- (or S-(−)-)1-(1-naphthyl)-ethylammonium lead bromide. This work may provide an alternative way to generate bright circularly polarized light from achiral materials, which has potential applications in spintronics, biosensing, and signal encryption.more » « less
-
For advancing next‐generation optoelectronics, a versatile strategy for fabricating π‐conjugated polymer (π‐CP)/chiral‐small molecule (SM) hybrid films through co‐crystallization‐mediated chirality transfer is reported. The transfer of optical chirality from 1,1′‐binaphthyl–2,2′‐diamine (BN), a representative chiral inducer SM, to thin films of various achiral π‐CPs, including non‐fluorene π‐CPs, is achieved by simply blending the π‐CPs with BN using aromatic organic solvents. The resulting π‐CP/chiral‐SM hybrid films exhibit chiroptical responses at the main electronic absorption bands of various π‐CPs. Studies of the morphology, crystalline structure, and phase‐separation structure of a representative hybrid system of poly(3‐hexylthiophene) (P3HT) and BN reveal that these hybrid films exhibit a characteristic lamellar structure where the π‐CPs co‐crystallize with chiral BN molecules, facilitated by aromatic solvent‐assisted intermolecular π–π interactions. In‐depth photophysical analysis suggests that BN molecules co‐crystallized in the P3HT lamellar structure induce asymmetrically misaligned transition dipoles along the P3HT conjugated backbone, transferring optical chirality from BN to P3HT under circularly polarized light illumination. As a proof‐of‐concept, chiroptical photodiodes based on π‐CP/chiral‐SM hybrid films and printed micropatterns, exhibiting a distinguishable photocurrent response depending on the direction of circularly polarized light are successfully demonstrated.more » « less
An official website of the United States government

