skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Channel Conversational Speaker Separation via Neural Diarization
When dealing with overlapped speech, the performance of automatic speech recognition (ASR) systems substantially degrades as they are designed for single-talker speech. To enhance ASR performance in conversational or meeting environments, continuous speaker separation (CSS) is commonly employed. However, CSS requires a short separation window to avoid many speakers inside the window and sequential grouping of discontinuous speech segments. To address these limitations, we introduce a new multi-channel framework called “speaker separation via neural diarization” (SSND) for meeting environments. Our approach utilizes an end-to-end diarization system to identify the speech activity of each individual speaker. By leveraging estimated speaker boundaries, we generate a sequence of embeddings, which in turn facilitate the assignment of speakers to the outputs of a multi-talker separation model. SSND addresses the permutation ambiguity issue of talker-independent speaker separation during the diarization phase through location-based training, rather than during the separation process. This unique approach allows multiple non-overlapped speakers to be assigned to the same output stream, making it possible to efficiently process long segments—a task impossible with CSS. Additionally, SSND is naturally suitable for speaker-attributed ASR. We evaluate our proposed diarization and separation methods on the open LibriCSS dataset, advancing state-of-the-art diarization and ASR results by a large margin.  more » « less
Award ID(s):
2125074
PAR ID:
10552805
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE/ACM Transactions on Audio, Speech, and Language Processing
Volume:
32
ISSN:
2329-9290
Page Range / eLocation ID:
2467 to 2476
Subject(s) / Keyword(s):
Multi-channel speaker diarization conversational speaker separation location-based training multi-speaker speech recognition
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The performance of automatic speech recognition (ASR) systems severely degrades when multi-talker speech overlap occurs. In meeting environments, speech separation is typically performed to improve the robustness of ASR systems. Recently, location-based training (LBT) was proposed as a new training criterion for multi-channel talker-independent speaker separation. Assuming fixed array geometry, LBT outperforms widely-used permutation-invariant training in fully overlapped utterances and matched reverberant conditions. This paper extends LBT to conversational multi-channel speaker separation. We introduce multi-resolution LBT to estimate the complex spectrograms from low to high time and frequency resolutions. With multi-resolution LBT, convolutional kernels are assigned consistently based on speaker locations in physical space. Evaluation results show that multi-resolution LBT consistently outperforms other competitive methods on the recorded LibriCSS corpus. 
    more » « less
  2. Continuous speaker separation aims to separate overlapping speakers in real-world environments like meetings, but it often falls short in isolating speech segments of a single speaker. This leads to split signals that adversely affect downstream applications such as automatic speech recognition and speaker diarization. Existing solutions like speaker counting have limitations. This paper presents a novel multi-channel approach for continuous speaker separation based on multi-input multi-output (MIMO) complex spectral mapping. This MIMO approach enables robust speaker localization by preserving inter-channel phase relations. Speaker localization as a byproduct of the MIMO separation model is then used to identify single-talker frames and reduce speaker splitting. We demonstrate that this approach achieves superior frame-level sound localization. Systematic experiments on the LibriCSS dataset further show that the proposed approach outperforms other methods, advancing state-of-the-art speaker separation performance. 
    more » « less
  3. Abstract Modern automatic speech recognition (ASR) systems are capable of impressive performance recognizing clean speech but struggle in noisy, multi-talker environments, commonly referred to as the “cocktail party problem.” In contrast, many human listeners can solve this problem, suggesting the existence of a solution in the brain. Here we present a novel approach that uses a brain inspired sound segregation algorithm (BOSSA) as a preprocessing step for a state-of-the-art ASR system (Whisper). We evaluated BOSSA’s impact on ASR accuracy in a spatialized multi-talker scene with one target speaker and two competing maskers, varying the difficulty of the task by changing the target-to-masker ratio. We found that median word error rate improved by up to 54% when the target-to-masker ratio was low. Our results indicate that brain-inspired algorithms have the potential to considerably enhance ASR accuracy in challenging multi-talker scenarios without the need for retraining or fine-tuning existing state-of-the-art ASR systems. 
    more » « less
  4. Current deep learning based multi-channel speaker sepa- ration methods produce a monaural estimate of speaker sig- nals captured by a reference microphone. This work presents a new multi-channel complex spectral mapping approach that simultaneously estimates the real and imaginary spectrograms of all speakers at all microphones. The proposed multi-input multi-output (MIMO) separation model uses a location-based training (LBT) criterion to resolve the permutation ambiguity in talker-independent speaker separation across microphones. Experimental results show that the proposed MIMO separation model outperforms a multi-input single-output (MISO) speaker separation model with monaural estimates. We also combine the MIMO separation model with a beamformer and a MISO speech enhancement model to further improve separation performance. The proposed approach achieves the state-of-the-art speaker separation on the open LibriCSS dataset. 
    more » « less
  5. Speaker diarization has traditionally been explored using datasets that are either clean, feature a limited number of speakers, or have a large volume of data but lack the complexities of real-world scenarios. This study takes a unique approach by focusing on the Fearless Steps APOLLO audio resource, a challenging data that contains over 70,000 hours of audio data (A-11: 10k hrs), the majority of which remains unlabeled. This corpus presents considerable challenges such as diverse acoustic conditions, high levels of background noise, overlapping speech, data imbalance, and a variable number of speakers with varying utterance duration. To address these challenges, we propose a robust speaker diarization framework built on dynamic Graph Attention Network optimized using data augmentation. Our proposed framework attains a Diarization Error Rate (DER) of 19.6% when evaluated using ground truth speech segments. Notably, our work is the first to recognize, track, and perform conversational analysis on the entire Apollo-11 mission for speakers who were unidentified until now. This work stands as a significant contribution to both historical archiving and the development of robust diarization systems, particularly relevant for challenging real-world scenarios. 
    more » « less