To unravel fouling and defouling mechanisms of protein, saccharides and natural organic matters (NOM) on polymeric membrane during filtration, this study investigated filtration characteristics on polyvinyl chloride (PVC) ultrafiltration membranes with bovine serum albumin, dextran, humic acid as model foulants. Membrane fouling and defouling performances were analyzed through monitoring the flux decline during filtration and flux recovery during physical backwash. Physico-chemical properties (e.g., hydrophobicity and surface charge) of PVC membrane and foulants were characterized, which were used in the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory to calculate the interaction energies between membrane foulant and foulant-foulant. The results showed that at the later filtration stages the fouling rate was strongly correlated with the deposition rate, which was determined by the interaction energy profile calculated by EDLVO. Moreover, the adhesion forces of membrane–foulant and foulant–foulant were further measured by atomic force microscopy (AFM) with modified colloidal probes. A positive correlation (R2 =0.845) between particle detachment rate (determined by adhesion force) and defouling rate was developed for BSA and HA foulants that led to cake layer formation. By contrast, dextran defouling rate was off this correlation as dextran partially clogged membrane pores due to its smaller size.
more »
« less
This content will become publicly available on February 1, 2026
Pattern size relative to oil droplet size effect on oil fouling in nanofiltration
Membrane fouling is a major issue in many membrane applications. There are numerous methods used in attempt to mitigate membrane fouling, with one method being membrane surface patterning. However, it is still unclear how the ratio of foulant size to pattern size affects membrane fouling. In this study, we investigated constant foulant size while varying the pattern size on the membrane surface to be smaller than (300-nm), equal to (10-μm), and larger than (50-μm) the foulant (10-μm) on polyamide nanofiltration membranes. These membranes were compared to a commercial nanofiltration membrane and a control flat synthesized membrane. The membranes were tested with water, 2000 ppm Na2SO4, and three cycles of a n-dodecane (as oil) brine solution in a dead-end cell to assess the fouling resistance and flux recovery ability of each polyamide membrane type. From the fouling experiments, it was determined that none of the pattern sizes significantly affect the flux recovery ratio, but smaller than and larger than patterns decreased the fouling rate on the polyamide membranes by a small margin.
more »
« less
- Award ID(s):
- 1941700
- PAR ID:
- 10553229
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Membrane Science
- Volume:
- 715
- Issue:
- C
- ISSN:
- 0376-7388
- Page Range / eLocation ID:
- 123457
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy- dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability.more » « less
-
This contribution describes a method to reduce bacteria fouling on ultrafiltration membranes by applying nanoscale line-and-groove patterns on the surface of membranes. Nanoimprint lithography was used to pattern the polysulfone membrane surfaces with a peak height of 66.2 nm and a period of 594.0 nm. Surface characterization using scanning electron microscopy and atomic force microscopy confirmed that patterning was successful over the entire stamped area of the membrane. Water permeance tests determined that the permeance decreased by 36% upon patterning. Static batch experiments that explored the attachment of Escherichia coli K12 cells to the membranes demonstrated that the patterned membranes had a 60% lower attachment of microbes than the nonpatterned membranes. Dynamic bacteria fouling experiments using E. coli cells showed that the patterned membranes had a higher flux recovery ratio (88%) compared to the nonpatterned membranes (70%). On the basis of these studies, we suggest that patterning membranes can reduce the initial attachments of microbial cells and that different pattern sizes and shapes should be investigated to gain a fundamental understanding of their influence on bacteria fouling.more » « less
-
Bioinspired membranes offer an alternative approach to improving the fouling resistance of commercial membranes for oil separations. Here, two perfluoropolyether oils, a lower viscosity Krytox 103 (K103) and a higher viscosity Krytox 107 (K107), were infused into commercial polyvinylidene fluoride (PVDF) ultrafiltration membranes to mimic the Nepenthes pitcher plant. The transmembrane pressure required to perform long-term oil permeance tests was optimized by testing the liquid-infused membranes at different applied pressures. Crystal violet staining and variable pressure scanning electron microscopy qualitatively suggest that the oil layer remained on the membranes after the oil separation experiments were conducted. Over 5 cycles, K103- and K107- liquid-infused membranes exhibited a consistent permeance of ∼ 30000 L m-2h−1 bar−1 at 1.0 bar and ∼ 14500 L m-2h−1 bar−1 at 0.5 bar, respectively. The steady performance further supports a long-lasting oil layer persists on the membrane surface and inside membrane’s pores. Next, experiments were conducted to determine the stability of the Krytox oil post accelerated cleaning tests using bleach. No structural changes to the Krytox oils were detected by thermogravimetric analysis or nuclear magnetic resonance spectroscopy. Dynamic fouling experiments using Escherichia coli K12 revealed that the liquid-infused membranes had higher flux recovery ratios (∼95 %) than the bare PVDF control membranes (∼55 %). Our results demonstrate that liquid-infused membranes exhibit chlorine stability and superior fouling resistance, presenting a promising bioinspired membrane that can be used in pressure-driven oil separation applications.more » « less
-
Reverse osmosis (RO), as an energy efficient desalination technology that is critical to mitigate water scarcity, encounters feedwater containing both organic foulants and inorganic scalants. However, comparing with extensive studies on individual fouling or scaling, our knowledge of the behavior and mechanisms associated with combined organic fouling and mineral scaling is still lacking. Due to the potential occurrence of mineral formation in both bulk solution and on the membrane surface, a complete, mechanistic understanding of combined fouling and scaling requires decoupling of surface and bulk phenomena. Herein, our study employed a comprehensive investigation to delve into the intricate interplay of gypsum scaling and organic fouling in RO process. Our systematic approach is accomplished through three sets of experiments that include static experiments and two types of dynamic experiments (i.e., (1) combined fouling and scaling, and (2) gypsum scaling on foulant-conditioned membranes). A variety of model foulants including humic acid, alginate, bovine serum albumin (BSA), and lysozyme were used to investigate the effects of foulant type. Our results demonstrate that the behavior of combined organic fouling and gypsum scaling aligns more with that of gypsum scaling on foulant-conditioned membranes rather than static experiments where bulk nucleation occurs, indicating the predominance of surface nucleation in RO. BSA exhibited a remarkable hindering effect on gypsum scaling, whereas other foulants displayed an additive effect. The lack of scaling mitigation by lysozyme suggests that molecular properties of protein must play a role in regulating the behavior of combined fouling and scaling. Results from multiple characterization techniques reveal the foulant-scalant interactions by delineating the morphological and chemical features of the fouling/scaling layers. Our study not only elucidates the mechanisms of combined organic fouling and gypsum scaling but also sheds light on potential strategies for membrane scaling control in RO desalination.more » « less
An official website of the United States government
