Abstract Objective . Deep-learning (DL)-based dose engines have been developed to alleviate the intrinsic compromise between the calculation accuracy and efficiency of the traditional dose calculation algorithms. However, current DL-based engines typically possess high computational complexity and require powerful computing devices. Therefore, to mitigate their computational burdens and broaden their applicability to a clinical setting where resource-limited devices are available, we proposed a compact dose engine via knowledge distillation (KD) framework that offers an ultra-fast calculation speed with high accuracy for prostate Volumetric Modulated Arc Therapy (VMAT). Approach . The KD framework contains two sub-models: a large pre-trained teacher and a small to-be-trained student. The student receives knowledge transferred from the teacher for better generalization. The trained student serves as the final engine for dose calculation. The model input is patient computed tomography and VMAT dose in water, and the output is DL-calculated patient dose. The ground-truth \dose was computed by the Monte Carlo module of the Monaco treatment planning system. Twenty and ten prostate cases were included for model training and assessment, respectively. The model’s performance (teacher/student/student-only) was evaluated by Gamma analysis and inference efficiency. Main results . The dosimetric comparisons (input/DL-calculated/ground-truth doses) suggest that the proposed engine can effectively convert low-accuracy doses in water to high-accuracy patient doses. The Gamma passing rate (2%/2 mm, 10% threshold) between the DL-calculated and ground-truth doses was 98.64 ± 0.62% (teacher), 98.13 ± 0.76% (student), and 96.95 ± 1.02% (student-only). The inference time was 16 milliseconds (teacher) and 11 milliseconds (student/student-only) using a graphics processing unit device, while it was 936 milliseconds (teacher) and 374 milliseconds (student/student-only) using a central processing unit device. Significance . With the KD framework, a compact dose engine can achieve comparable accuracy to that of a larger one. Its compact size reduces the computational burdens and computing device requirements, and thus such an engine can be more clinically applicable.
more »
« less
Performance assessment of variant UNet-based deep-learning dose engines for MR-Linac-based prostate IMRT plans
Abstract Objective. UNet-based deep-learning (DL) architectures are promising dose engines for traditional linear accelerator (Linac) models. Current UNet-based engines, however, were designed differently with various strategies, making it challenging to fairly compare the results from different studies. The objective of this study is to thoroughly evaluate the performance of UNet-based models on magnetic-resonance (MR)-Linac-based intensity-modulated radiation therapy (IMRT) dose calculations.Approach. The UNet-based models, including the standard-UNet, cascaded-UNet, dense-dilated-UNet, residual-UNet, HD-UNet, and attention-aware-UNet, were implemented. The model input is patient CT and IMRT field dose in water, and the output is patient dose calculated by DL model. The reference dose was calculated by the Monaco Monte Carlo module. Twenty training and ten test cases of prostate patients were included. The accuracy of the DL-calculated doses was measured using gamma analysis, and the calculation efficiency was evaluated by inference time.Results. All the studied models effectively corrected low-accuracy doses in water to high-accuracy patient doses in a magnetic field. The gamma passing rates between reference and DL-calculated doses were over 86% (1%/1 mm), 98% (2%/2 mm), and 99% (3%/3 mm) for all the models. The inference times ranged from 0.03 (graphics processing unit) to 7.5 (central processing unit) seconds. Each model demonstrated different strengths in calculation accuracy and efficiency; Res-UNet achieved the highest accuracy, HD-UNet offered high accuracy with the fewest parameters but the longest inference, dense-dilated-UNet was consistently accurate regardless of model levels, standard-UNet had the shortest inference but relatively lower accuracy, and the others showed average performance. Therefore, the best-performing model would depend on the specific clinical needs and available computational resources.Significance. The feasibility of using common UNet-based models for MR-Linac-based dose calculations has been explored in this study. By using the same model input type, patient training data, and computing environment, a fair assessment of the models’ performance was present.
more »
« less
- Award ID(s):
- 2016571
- PAR ID:
- 10554732
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Physics in Medicine & Biology
- Volume:
- 68
- Issue:
- 17
- ISSN:
- 0031-9155
- Page Range / eLocation ID:
- 175004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Purpose. To investigate the relationship between spatial parotid dose and the risk of xerostomia in patients undergoing head-and-neck cancer radiotherapy, using machine learning (ML) methods.Methods. Prior to conducting voxel-based ML analysis of the spatial dose, two steps were taken: (1) The parotid dose was standardized through deformable image registration to a reference patient; (2) Bilateral parotid doses were regrouped into contralateral and ipsilateral portions depending on their proximity to the gross tumor target. Individual dose voxels were input into six commonly used ML models, which were tuned with ten-fold cross validation: random forest (RF), ridge regression (RR), support vector machine (SVM), extra trees (ET), k-nearest neighbor (kNN), and naïve Bayes (NB). Binary endpoints from 240 patients were used for model training and validation: 0 (N = 119) for xerostomia grades 0 or 1, and 1 (N = 121) for grades 2 or higher. Model performance was evaluated using multiple metrics, including accuracy, F1score, areas under the receiver operating characteristics curves (auROC), and area under the precision–recall curves (auPRC). Dose voxel importance was assessed to identify local dose patterns associated with xerostomia risk.Results. Four models, including RF, SVM, ET, and NB, yielded average auROCs and auPRCs greater than 0.60 from ten-fold cross-validation on the training data, except for a lower auROC from NB. The first three models, along with kNN, demonstrated higher accuracy and F1scores. A bootstrapping analysis confirmed test uncertainty. Voxel importance analysis from kNN indicated that the posterior portion of the ipsilateral gland was more predictive of xerostomia, but no clear patterns were identified from the other models.Conclusion. Voxel doses as predictors of xerostomia were confirmed with some ML classifiers, but no clear regional patterns could be established among these classifiers, except kNN. Further research with a larger patient dataset is needed to identify conclusive patterns.more » « less
-
Abstract PurposeMost commercially available treatment planning systems (TPSs) approximate the continuous delivery of volumetric modulated arc therapy (VMAT) plans with a series of discretized static beams for treatment planning, which can make VMAT dose computation extremely inefficient. In this study, we developed a polar‐coordinate‐based pencil beam (PB) algorithm for efficient VMAT dose computation with high‐resolution gantry angle sampling that can improve the computational efficiency and reduce the dose discrepancy due to the angular under‐sampling effect. Methods and Materials6 MV pencil beams were simulated on a uniform cylindrical phantom under an EGSnrc Monte Carlo (MC) environment. The MC‐generated PB kernels were collected in the polar coordinate system for each bixel on a fluence map and subsequently fitted via a series of Gaussians. The fluence was calculated using a detectors’ eye view with off‐axis and MLC transmission factors corrected. Doses of VMAT arc on the phantom were computed by summing the convolution results between the corresponding PB kernels and fluence for each bixel in the polar coordinate system. The convolution was performed using fast Fourier transform to expedite the computing speed. The calculated doses were converted to the Cartesian coordinate system and compared with the reference dose computed by a collapsed cone convolution (CCC) algorithm of the TPS. A heterogeneous phantom was created to study the heterogeneity corrections using the proposed algorithm. Ten VMAT arcs were included to evaluate the algorithm performance. Gamma analysis and computation complexity theory were used to measure the dosimetric accuracy and computational efficiency, respectively. ResultsThe dosimetric comparisons on the homogeneous phantom between the proposed PB algorithm and the CCC algorithm for 10 VMAT arcs demonstrate that the proposed algorithm can achieve a dosimetric accuracy comparable to that of the CCC algorithm with average gamma passing rates of 96% (2%/2mm) and 98% (3%/3mm). In addition, the proposed algorithm can provide better computational efficiency for VMAT dose computation using a PC equipped with a 4‐core processor, compared to the CCC algorithm utilizing a dual 10‐core server. Moreover, the computation complexity theory reveals that the proposed algorithm has a great advantage with regard to computational efficiency for VMAT dose computation on homogeneous medium, especially when a fine angular sampling rate is applied. This can support a reduction in dose errors from the angular under‐sampling effect by using a finer angular sampling rate, while still preserving a practical computing speed. For dose calculation on the heterogeneous phantom, the proposed algorithm with heterogeneity corrections can still offer a reasonable dosimetric accuracy with comparable computational efficiency to that of the CCC algorithm. ConclusionsWe proposed a novel polar‐coordinate‐based pencil beam algorithm for VMAT dose computation that enables a better computational efficiency while maintaining clinically acceptable dosimetric accuracy and reducing dose error caused by the angular under‐sampling effect. It also provides a flexible VMAT dose computation structure that allows adjustable sampling rates and direct dose computation in regions of interest, which makes the algorithm potentially useful for clinical applications such as independent dose verification for VMAT patient‐specific QA.more » « less
-
This study explores the application of deep learning to the segmentation of DENSE cardiovascular magnetic resonance (CMR) images, which is an important step in the analysis of cardiac deformation and may help in the diagnosis of heart conditions. A self-adapting method based on the nnU-Net framework is introduced to enhance the accuracy of DENSE-MR image segmentation, with a particular focus on the left ventricle myocardium (LVM) and left ventricle cavity (LVC), by leveraging the phase information in the cine DENSE-MR images. Two models are built and compared: 1) ModelM, which uses only the magnitude of the DENSE-MR images; and 2) ModelMP, which incorporates magnitude and phase images. DENSE-MR images from 10 human volunteers processed using the DENSE-Analysis MATLAB toolbox were included in this study. The two models were trained using a 2D UNet-based architecture with a loss function combining the Dice similarity coefficient (DSC) and cross-entropy. The findings show the effectiveness of leveraging the phase information with ModelMP resulting in a higher DSC and improved image segmentation, especially in challenging cases, e.g., at early systole and with basal and apical slices.more » « less
-
Abstract Objective. This study proposes and evaluates a new figure of merit (FOMn) for dose optimization of Dual-energy cone-beam CT (DE-CBCT) scanning protocols based on size-dependent modeling of radiation dose and multi-scale image quality.Approach. FOMn was defined using Z-score normalization and was proportional to the dose efficiency providing better multi-scale image quality, including comprehensive contrast-to-noise ratio (CCNR) and electron density (CED) for CatPhan604 inserts of various materials. Acrylic annuluses were combined with CatPhan604 to create four phantom sizes (diameters of the long axis are 200 mm, 270 mm, 350 mm, and 380 mm, respectively). DE-CBCT was decomposed using image-domain iterative methods based on Varian kV-CBCT images acquired using 25 protocols (100 kVp and 140 kVp combined with 5 tube currents).Main results. The accuracy of CED was approximately 1% for all protocols, but degraded monotonically with the increased phantom sizes. Combinations of lower voltage + higher current and higher voltage + lower current were optimal protocols balancing CCNR and dose. The most dose-efficient protocols for CED and CCNR were inconsistent, underlining the necessity of including multi-scale image quality in the evaluation and optimization of DE-CBCT. Pediatric and adult anthropomorphic phantom tests confirmed dose-efficiency of FOMn-recommended protocols.Significance. FOMn is a comprehensive metric that collectively evaluates radiation dose and multi-scale image quality for DE-CBCT. The models and data can also serve as lookup tables, suggesting personalized dose-efficient protocols for specific clinical imaging purposes.more » « less
An official website of the United States government

