skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization, processing, and modeling of industrial recycled polyolefins
Abstract This study aims to establish a systematic approach for characterizing recycled polyolefins of unknown composition, with a specific focus on predicting their performance in film extrusion. We explore various characterization techniques, including differential scanning calorimetry (DSC), Fourier‐transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and rheometry to assess their effectiveness in identifying the polyethylene (PE) fractions within polypropylene (PP) recyclates. By integrating experimental data with modeling techniques, we aim to provide insights into the predictive capabilities of these techniques in determining processing behaviors. The research highlights the superior fidelity of DSC in predicting the relative fraction and type of PE in a PP recyclate. FTIR is also identified as a high‐fidelity approach, albeit requiring application‐specific calibration. TGA, capillary, and oscillatory rheometry are recognized for their ability to distinguish between grades of recycled polyolefins but provide aggregate behaviors rather than detailed constituent information. 3D flow simulation of the cast film extrusion investigated the effect of the viscosity characterization method, non‐isothermal assumption, and process settings but could not fully replicate the observed variations in the cast film processing of two industrial polyolefins with similar melt flow rates and viscosity behaviors. This underscores the practical challenge of predicting processing issues prior to actual processing, necessitating reliance on reliable instrumentation suites and human expertise for diagnosing and remedying variations. HighlightsTwo industrial recycled polypropylene materials having similar melt flow rates exhibit drastically different cast film processing behaviors.DSC and FTIR provide reasonable approaches for identifying constituent materials.Modeling of the melt viscosities characterized by capillary and parallel plate rheology suggests that viscosity variations relative to the power‐law behavior assumed in the coat hanger die design is a predominant driver of cast film instabilities.  more » « less
Award ID(s):
2118808 2119040
PAR ID:
10555235
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
NSF PAR
Date Published:
Journal Name:
Polymer Engineering & Science
Volume:
64
Issue:
10
ISSN:
0032-3888
Page Range / eLocation ID:
4801 to 4815
Subject(s) / Keyword(s):
film extrusion flow simulation materials characterization plastics recycling polyolefins
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The processing and performance of multilayer films containing post‐consumer recycled polypropylene (rPP1 and rPP2) materials are investigated to understand the effect of layer multiplying elements (LMEs), die temperature, virgin polypropylene (vPP%) content, and polyethylene (PE) contamination in flexible packaging applications. Three‐layer coextruded films were created with virgin polypropylene (vPP) consistently applied as the outer layers while the core layer comprised recyclates with varying concentrations of polyethylene as an unintended contaminant to polypropylene. To enhance layer uniformity and interfacial interaction, a layer multiplying element (LME) was employed to increase the number of coextruded film layers from 3 to 9. Tensile properties (elongation at break, yield stress, and modulus) were characterized in both machine direction (MD) and transverse direction (TD); after which, multiple linear regression analyses were conducted on 45 observations to model the effect of each factor. The results indicated that the LME significantly enhanced elongation at break in TD by 1280% strain, while temperature and vPP fraction also contributed positively to ductility in TD (+341% and +2373%, respectively). However, PE contamination had a substantial negative impact on elongation in MD (−2449%) underscoring its embrittling role due to lack of compatibility with the PP matrix. Critically, LME partially mitigated the negative PE effect via an interaction term (PE*LME), improving elongation in MD by +3101%. Scanning Electron Microscopy (SEM) revealed a distinct, regular pattern of alternating polyethylene (PE) and polypropylene (PP) domains forming ribbon‐like fibrillar structures. This unique morphological arrangement suggests a self‐organizing behavior driven by immiscibility and flow‐induced alignment under extrusion conditions. The presence of regular alternating domains at near equal concentrations implies a balance among shear‐driven orientation, phase separation kinetics, and crystallization phenomena, resulting in an ordered micro‐fibrillar structure. Importantly, both monolayer and multilayer films containing rPP2 or rPP1/rPP2 blends exhibited these aligned, ribbon‐like fibrils oriented in the machine direction (MD). SEM analysis of fractured specimens further indicated that brittle failure was often associated with interfacial delamination, particularly in recyclate‐rich regions, whereas ductile failure exhibited entangled reinforcing fibrils, suggesting improved energy absorption and interlayer cohesion. Understanding and controlling this self‐organized microstructure could significantly enhance processing stability, mechanical properties, and potential applications of recycled polyolefin blends, offering novel strategies for tailoring recyclate morphology and performance. 
    more » « less
  2. The decentralized production associated with material extrusion additive manufacture (MEX) has been proposed as an ideal path to increase the circularity of plastics through direct recycling. Although multiple studies have reported on the 3D printing of various recycled plastics, variability in recycled materials, in particular post-consumer waste, challenges the direct extension of these results into production through MEX. Here, we demonstrate filament fabrication and printing of post-consumer polypropylene (PP), where the PP is sourced from clear, cold drink cups from three large international food service and beverage retail chains to provide well defined plastic waste that is perfectly sorted for recycling. These sources for the recycled PP were selected due to their ready availability to enable the results to be directly applied for hobbyist printing, blow molded products to provide good mechanical performance, and the clarity of the PP that suggests formulation design to minimize the PP crystal size. Despite the similarities in the end use product and their physical appearance, the source for the PP impacted the mechanical properties and the visual appearance of the printed objects. These differences can be directly traced to the rheological properties and oxidative stability of the PP at conditions relevant with the print process. These results clearly illustrate differences in initial formulation design and branding details, even when the product is for the same application, impacts the performance of recycled plastics in AM. The high viscosity associated with the PP from blow molding leads to requirements for higher extrusion temperatures for printing. The combination of high temperature and shear during extrusion process of 3D printing degrades the recycled PP. For circularity with MEX with recycled PP, one needs to consider the evolution in the properties of the polymer. Rheological details of recycled plastics are critical to selection of processing conditions and performance of MEX parts. Reporting of rheological data of recycled plastics and these properties after printing is critical to enable translation towards circular 3D printing of recycled plastics. 
    more » « less
  3. Management of the plastic industry is a momentous challenge, one that pits enormous societal benefits against an accumulating reservoir of nearly indestructible waste. A promising strategy for recycling polyethylene (PE) and isotactic polypropylene ( i PP), constituting roughly half the plastic produced annually worldwide, is melt blending for reformulation into useful products. Unfortunately, such blends are generally brittle and useless due to phase separation and mechanically weak domain interfaces. Recent studies have shown that addition of small amounts of semicrystalline PE- i PP block copolymers (ca. 1 wt%) to mixtures of these polyolefins results in ductility comparable to the pure materials. However, current methods for producing such additives rely on expensive reagents, prohibitively impacting the cost of recycling these inexpensive commodity plastics. Here, we describe an alternative strategy that exploits anionic polymerization of butadiene into block copolymers, with subsequent catalytic hydrogenation, yielding E and X blocks that are individually melt miscible with PE and i PP, where E and X are poly(ethylene- ran -ethylethylene) random copolymers with 6 wt% and 90 wt% ethylethylene repeat units, respectively. Cooling melt blended mixtures of PE and i PP containing 1 wt% of the triblock copolymer EXE of appropriate molecular weight, results in mechanical properties competitive with the component plastics. Blend toughness is obtained through interfacial topological entanglements of the amorphous X polymer and semicrystalline i PP, along with anchoring of the E blocks through cocrystallization with the PE homopolymer. Significantly, EXE can be inexpensively produced using currently practiced industrial scale polymerization methods, offering a practical approach to recycling the world’s top two plastics. 
    more » « less
  4. Plastics offer innumerable societal benefits but simultaneously contribute to persistent environmental pollution, dominated by polyethylene (PE) and isotactic polypropylene (iPP). Melt blending and reformulating postconsumer PE andiPP into useful materials presents a promising recycling approach. However, such repurposed plastics are generally mechanically inferior due to an inability to efficiently separate polyolefins in mixed waste streams; phase separation of PE andiPP results in brittleness as a consequence of poor interfacial strength. Recently, we demonstrated that a small amount (1 wt%) of a poly(ethylene)-block-poly(ethyl ethylene-ran-ethylene)-block-poly(ethylene) (EXE) triblock copolymer, synthesized by low-cost anionic polymerization of 1,3-butadiene followed by solution hydrogenation, restores tensile toughness to levels equivalent to virgin polyolefins. Unfortunately, low-temperature solvent insolubility of EXE, driven by crystallization of the E blocks containing 1.5 ethyl branches per 100 backbone repeat units (EB), presents a challenge for industrial hydrogenation. Comparable toughness (ca. > 400% strain at break) was achieved in the present work with 1.5 ≤ EB ≤ 6.5, accompanied by reduced EXE crystallinity and dissolution in cyclohexane down to room temperature at the highest EB content. This remarkable toughening behavior is attributed to a synergy between chain entanglements between the E end blocks and semicrystalline PE homopolymer and formation of E block “crystal nodules” that prevent chain pullout, along with topological constraints between the X loops and semicrystallineiPP. Our findings overcome barriers to commercial production of EXE with existing industrial facilities, providing a cost-effective strategy for recycling PE andiPP. 
    more » « less
  5. Developing effective recycling pathways for polyolefin waste, enabling a move to a circular economy, is an imperative that must be met. Post-use modification has shown promising results in upcycling polyolefins, removing the limitation of inertness, and improving the final physical properties of the recycled material while extending its useful lifetime. Grafting of maleic anhydride groups to polypropylene is an established industrial process that enhances its reactivity and provides a convenient route to further functionalization and upcycling. In this work, maleic anhydride grafted polypropylene (PPgMAH) was hydroxylated, and subsequently cured with a diisocyanate to form a thermoset polyurethane (PU). The crystal structure (unit cell and lamellar structure) of the polypropylene (PP) was preserved in the PU. At room temperature, the PU showed high modulus due to the crystallization behavior of the PP; upon increasing the temperature above the melting temperature, the modulus decreased to a rubbery plateau, consistent with formation of a network. The resulting PU showed higher glass transition temperature and lower degree of crystallinity than its PP predecessor due to the crosslinked nature of the polymer. The mechanical integrity of the PU was maintained through several reprocessing cycles due to the melt processability enabled by the presence of a urethane exchange catalyst. This functionalization and upcycling route thus offers a promising alternative to repurposing PP waste, in which the creation of melt-processable thermoset polymers expands applications for the materials. 
    more » « less