skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A first proof of knot localization for polymers in a nanochannel
Abstract Based on polymer scaling theory and numerical evidence, Orlandini, Tesi, Janse van Rensburg and Whittington conjectured in 1996 that the limiting entropy of knot-typeKlattice polygons is the same as that for unknot polygons, and that the entropic critical exponent increases by one for each prime knot in the knot decomposition ofK. This Knot Entropy (KE) conjecture is consistent with the idea that for unconfined polymers, knots occur in a localized way (the knotted part is relatively small compared to polymer length). For full confinement (to a sphere or box), numerical evidence suggests that knots are much less localized. Numerical evidence for nanochannel or tube confinement is mixed, depending on how the size of a knot is measured. Here we outline the proof that the KE conjecture holds for polygons in the × 2 × 1 lattice tube and show that knotting is localized when a connected-sum measure of knot size is used. Similar results are established for linked polygons. This is the first model for which the knot entropy conjecture has been proved.  more » « less
Award ID(s):
1934568
PAR ID:
10555432
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Volume:
57
Issue:
38
ISSN:
1751-8113
Page Range / eLocation ID:
38LT01
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We state a general purpose algorithm for quickly finding primes in evenly divided sub-intervals. Legendre’s conjecture claims that for every positive integern, there exists a prime between$$n^2$$ n 2 and$$(n+1)^2$$ ( n + 1 ) 2 . Oppermann’s conjecture subsumes Legendre’s conjecture by claiming there are primes between$$n^2$$ n 2 and$$n(n+1)$$ n ( n + 1 ) and also between$$n(n+1)$$ n ( n + 1 ) and$$(n+1)^2$$ ( n + 1 ) 2 . Using Cramér’s conjecture as the basis for a heuristic run-time analysis, we show that our algorithm can verify Oppermann’s conjecture, and hence also Legendre’s conjecture, for all$$n\le N$$ n N in time$$O( N \log N \log \log N)$$ O ( N log N log log N ) and space$$N^{O(1/\log \log N)}$$ N O ( 1 / log log N ) . We implemented a parallel version of our algorithm and improved the empirical verification of Oppermann’s conjecture from the previous$$N = 2\cdot 10^{9}$$ N = 2 · 10 9 up to$$N = 7.05\cdot 10^{13} > 2^{46}$$ N = 7.05 · 10 13 > 2 46 , so we were finding 27 digit primes. The computation ran for about half a year on each of two platforms: four Intel Xeon Phi 7210 processors using a total of 256 cores, and a 192-core cluster of Intel Xeon E5-2630 2.3GHz processors. 
    more » « less
  2. Abstract LetMbe a connected, closed, oriented three-manifold andK, Ltwo rationally null-homologous oriented simple closed curves in M. We give an explicit algorithm for computing the linking number betweenKandLin terms of a presentation of Mas an irregular dihedral three-fold cover of $$S^3$$ S 3 branched along a knot$$\alpha \subset S^3$$ α S 3 . Since every closed, oriented three-manifold admits such a presentation, our results apply to all (well-defined) linking numbers in all three-manifolds. Furthermore, ribbon obstructions for a knot $$\alpha $$ α can be derived from dihedral covers of $$\alpha $$ α . The linking numbers we compute are necessary for evaluating one such obstruction. This work is a step toward testing potential counter-examples to the Slice-Ribbon Conjecture, among other applications. 
    more » « less
  3. Abstract We consider a conjecture that identifies two types of base point free divisors on$$\overline {\text {M}}_{0,n}$$ M ¯ 0 , n . The first arises from Gromov-Witten theory of a Grassmannian. The second comes from first Chern classes of vector bundles associated with simple Lie algebras in type A. Here we reduce this conjecture on$$\overline {\text {M}}_{0,n}$$ M ¯ 0 , n to the same statement forn= 4. A reinterpretation leads to a proof of the conjecture on$$\overline {\text {M}}_{0,n}$$ M ¯ 0 , n for a large class, and we give sufficient conditions for the non-vanishing of these divisors. 
    more » « less
  4. Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ X = C 1 × C 2 of two curves over$$\mathbb {Q} $$ Q with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ J 1 ( Q ) J 2 ( Q ) ε CH 0 ( C 1 × C 2 ) is finite, where$$J_i$$ J i is the Jacobian variety of$$C_i$$ C i . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ E 1 , E 2 with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ X = C 1 × × C d for which the analogous map$$\varepsilon $$ ε has finite image. 
    more » « less
  5. Abstract A graphGisH-freeif it has no induced subgraph isomorphic toH. We prove that a$$P_5$$ P 5 -free graph with clique number$$\omega \ge 3$$ ω 3 has chromatic number at most$$\omega ^{\log _2(\omega )}$$ ω log 2 ( ω ) . The best previous result was an exponential upper bound$$(5/27)3^{\omega }$$ ( 5 / 27 ) 3 ω , due to Esperet, Lemoine, Maffray, and Morel. A polynomial bound would imply that the celebrated Erdős-Hajnal conjecture holds for$$P_5$$ P 5 , which is the smallest open case. Thus, there is great interest in whether there is a polynomial bound for$$P_5$$ P 5 -free graphs, and our result is an attempt to approach that. 
    more » « less