skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Ecogeomorphic Interactions in Drylands: Aeolian Processes
Dryland environments are experiencing shifting ecogeomorphic patterns due to climatic changes and anthropogenic activities, resulting in a shift from grasslands to shrub-dominated landscapes. This dissertation investigates the effects from increasingly variable monsoonal precipitation and ecogeomorphic connectivity on perennial grass growth, litter distribution, and soil organic matter in drylands, with a focus on grass-shrub ecotones. Field experiments were conducted in the Chihuahuan Desert at the Jornada Basin Long-Term Ecological Research (LTER) site using a precipitation manipulation system and connectivity modifiers (ConMods) to assess their effects on plant productivity, recruitment, and soil nutrient distribution. Results show that reducing connectivity, combined with increased monsoonal precipitation, can enhance perennial grass productivity and recruitment, and affect the distribution of soil organic matter and non-photosynthetic vegetation. These findings contribute to our understanding of how aeolian processes and shifting precipitation regimes will shape vegetation patterns and soil properties in dryland environments under future climate scenarios. This research provides insights into potential mitigation strategies for combating shrub encroachment and promoting the sustainability of dryland ecosystems.  more » « less
Award ID(s):
2025166
PAR ID:
10556946
Author(s) / Creator(s):
Publisher / Repository:
ProQuest
Date Published:
Format(s):
Medium: X
Institution:
University of California, Los Angeles
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Perennial grass energy crop production is necessary for the successful and sustainable expansion of bioenergy in North America. Numerous environmental advantages are associated with perennial grass cropping systems, including their potential to promote soil carbon accrual. Despite growing research interest in the abiotic and biotic factors driving soil carbon cycling within perennial grass cropping systems, soil fauna remain a critical yet largely unexplored component of these ecosystems. By regulating microbial activity and organic matter decomposition dynamics, soil fauna influence soil carbon stability with potentially significant implications for soil carbon accrual. We begin by reviewing the diverse, predominantly indirect effects of soil fauna on soil carbon dynamics in the context of perennial grass cropping systems. Since the impacts of perennial grass energy crop production on soil fauna will mediate their potential contributions to soil carbon accrual, we then discuss how perennial grass energy crop traits, diversity, and management influence soil fauna community structure and activity. We assert that continued research into the interactions of soil fauna, microbes, and organic matter will be important for advancing our understanding of soil carbon dynamics in perennial grass cropping systems. Furthermore, explicit consideration of soil faunal effects on soil carbon can improve our ability to predict changes in soil carbon following perennial grass cropping system establishment. We conclude by addressing the major knowledge gaps that should be prioritized to better understand and model the complex connections between perennial grass bioenergy systems, soil fauna, and carbon accrual. 
    more » « less
  2. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  3. Abstract Herbivores can be drivers of ecosystem change by triggering and reinforcing vegetation transitions. Such processes may be prevalent in drylands with low productivity where herbivore abundances are linked to climate‐driven resource pulses. In the Chihuahuan Desert, ecosystems are being transformed from black grama (Bouteloua eriopoda) grasslands to honey mesquite (Neltuma[formerlyProsopis]glandulosa) shrublands. Domestic livestock, exotic African oryx (Oryx gazella), and native rodents and lagomorphs have all been implicated as drivers of these transitions through multiple mechanisms affecting different plant life stages. Across shrub encroachment gradients, we paired a long‐term (21 years) herbivore exclusion experiment focused on established perennial grasses with field trials measuring herbivory risk for perennial grass seedlings. We evaluated the roles of cattle, oryx, and native herbivores in reducing grass cover, and tested whether herbivore effects on grass cover and seedling mortality varied among ecosystem states (grassland, ecotone, and shrubland). Cattle and African oryx did not contribute strongly to vegetation dynamics. However, long‐term exclusion of rodents and lagomorphs led to two‐to‐threefold increases in perennial grass cover compared to control plots (with open access to all herbivores) in shrub‐encroached states where mesquite shrubs provided these herbivores with cover from predators. Likewise, herbivory of perennial grass seedlings was highest in the shrub‐encroached states and was driven by rodents. Our results indicate that native rodents and lagomorphs exert strong control over perennial grass dynamics, creating positive feedbacks mediated by changes in habitat structure that can reinforce grassland–shrubland transitions in drylands. 
    more » « less
  4. Woody plant encroachment is infuenced by interactions between the physical environment and vegetation, which create heterogenous microenvironments some of which favor shrub recruitment through mitigation of the abiotic environment. Encroachment of native shrub, Morella cerifera into grasslands on Hog Island, Virginia has been attributed to warmer winter temperature; however, recruitment of seedlings in grasslands may be impacted by multiple factors at the level of the microhabitat. Our study focuses on a critical gap in understanding factors specifcally infuencing M. cerifera seedling recruitment and survival. By experimentally planting M. cerifera seedlings at varying dune elevations and grass densities, we tested hypotheses that dune elevation infuences the microclimate, soil characteristics and vegetation cover and that grass cover/density is related to shrub establishment. We tested these hypotheses through gathering data from temperature data loggers, conducting soil water content and chloride analyses, and determining percent cover of grasses relative to dune elevation. Results indicate that dune elevation was positively related to moderated temperatures with reduced temperature extremes and vegetation cover/composition that led to favorable locations for M. cerifera establishment and growth. Where dune elevation is>2 m, we document an upper limit of grass cover on natural seedling establishment, suggesting a switch from facilitative to competitive efects with grass density. Overall, our work demonstrates interactions between dune elevation and medium grass density has a facilitative infuence on M. cerifera establishment and can be used for future predictions of shrub growth with rising sea-levels. 
    more » « less
  5. The encroachment of woody shrubs into grasslands is a phenomenon that has been occurring in the Chihuahuan Desert since the 1800s. Research shows that extensive livestock grazing and increased drought levels have acted as the main drivers of the grassland-to-shrubland transition. Very few studies have considered the impacts of such vegetation changes on microbial communities. Microbes play important ecosystem roles in nutrient cycling and carbon sequestration but also have the potential to act as pathogens. As the role of microbes in ecosystems is so important, it is crucial to understand the potential impacts of shrub encroachment on microbes and vice versa. Additionally, dryland microbes in general are understudied and as drylands cover over 40% of Earth’s land, understanding these microbes is of great ecological importance. The goal of this study was to assess microbial communities in shrub encroached systems in the Chihuahuan Desert to improve understanding of the ecological impacts of encroachment and increase general knowledge of dryland microbes. To conduct this study, soil samples were collected from sites dominated by black grama grass (Bouteloua eriopoda), sites dominated by honey mesquite shrubs (Prosopis glandulosa), and transition sites with both black grama and mesquite. DNA from soil samples was sequenced for bacteria (16S) and fungi (ITS2). Soil sampling was conducted through five sampling periods across a 10-month range to assess any potential seasonal variation in the microbial communities. In addition to DNA sequencing, microbial biomass and other environmental variables were collected. Statistical analyses were conducted to assess potential differences in microbial communities between vegetation types and seasons. Analyses included assessments of alpha and beta diversity, co-occurrence networks, and differential abundance analyses. Results show that there are significant changes in the microbial communities across vegetation types and seasons. Unique fungal and bacterial communities were identified in association with the different vegetation types, demonstrating that differences in vegetation influence microbial communities. Additionally, findings show that microbial communities are strongly impacted by seasons, showing decreases in biomass and changes to community composition in warm summer months compared to cooler months. Additionally, results show higher proportions of fungal pathogens in grass sites compared to other sites. Overall, this study demonstrates that microbial communities are influenced by shrub encroachment. As dryland microbial communities are often understudied, these findings can provide valuable insight into the ecology of dryland microbes and shrub-encroached systems. 
    more » « less