skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Planck Dust Polarization Power Spectra Are Consistent with Strongly Supersonic Turbulence
The polarization of the cosmic microwave background is rich in information but obscured by foreground emission from the Milky Way's interstellar medium (ISM). To uncover relationships between the underlying turbulent ISM and the foreground power spectra, we simulated a suite of driven, magnetized, turbulent models of the ISM, varying the fluid properties via the sonic Mach number and magnetic (Alfvén) Mach number, . We measure the power spectra of density (ρ), velocity (v), magnetic field (H), total projected intensity (T), parity-even polarization (E), and parity-odd polarization (B). We find that the slopes of all six quantities increase with sonic Mach number. Most increase with Alfven Mach number, while the magnetic field spectrum steepens with Alfven Mach number. By comparing spectral slopes of E and B to those measured by Planck, we infer typical values of sonic and Alfven Mach numbers for the ISM. As the fluid velocity increases and the sonic Mach number exceed 4, the ratio of BB power to EE power increases to approach a constant value near the Planck-observed value of ~0.5, regardless of the magnetic field strength. We also examine correlation coefficients between projected quantities, and find that the TE cross-correlation is ~0.3, in agreement with Planck, for appropriate combinations of Mach numbers. Finally, we consider parity-violating correlations..  more » « less
Award ID(s):
2009870
PAR ID:
10557337
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
972
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a technique to measure the time-resolved velocity and ion sound speed in magnetized, supersonic high-energy-density plasmas. We place an inductive (“b-dot”) probe in a supersonic pulsed-power-driven plasma flow and measure the magnetic field advected by the plasma. As the magnetic Reynolds number is large ( R M > 10), the plasma flow advects a magnetic field proportional to the current at the load. This enables us to estimate the flow velocity as a function of time from the delay between the current at the load and the signal at the probe. The supersonic flow also generates a hydrodynamic bow shock around the probe, the structure of which depends on the upstream sonic Mach number. By imaging the shock around the probe with a Mach–Zehnder interferometer, we determine the upstream Mach number from the shock Mach angle, which we then use to determine the ion sound speed from the known upstream velocity. We use the sound speed to infer the value of [Formula: see text], where [Formula: see text] is the average ionization and T e is the electron temperature. We use this diagnostic to measure the time-resolved velocity and sound speed of a supersonic ( M S ∼ 8), super-Alfvénic ( M A ∼ 2) aluminum plasma generated during the ablation stage of an exploding wire array on the Magpie generator (1.4 MA, 250 ns). The velocity and [Formula: see text] measurements agree well with the optical Thompson scattering measurements reported in the literature and with 3D resistive magnetohydrodynamic simulations in GORGON. 
    more » « less
  2. Abstract Understanding the role of turbulence in shaping the interstellar medium (ISM) is crucial for studying star formation, molecular cloud evolution, and cosmic-ray propagation. Central to this is the measurement of the sonic Mach number (Ms), which quantifies the ratio of turbulent velocity to the sound speed. In this work, we introduce a convolutional-neural-network-(CNN)-based approach for estimatingMsdirectly from spectroscopic observations. The approach leverages the physical correlation between increasingMsand the shock-induced small-scale fluctuations that alter the morphological features in intensity, velocity centroid, and velocity channel maps. These maps, derived from 3D magnetohydrodynamic turbulence simulations, serve as inputs for the CNN training. By learning the relationship between these structural features and the underlying turbulence properties, CNNs can predictMsunder various conditions, including different magnetic fields and levels of observational noise. The median uncertainty of the CNN-predictedMsranges from 0.5 to 1.5 depending on the noise level. While intensity maps offer lower uncertainty, channel maps have the advantage of predicting the 3DMsdistribution, which is crucial in estimating 3D magnetic field strength. Our results demonstrate that machine-learning-based tools can effectively characterize complex turbulence properties in the ISM. 
    more » « less
  3. Abstract Polarization of interstellar dust emission is a powerful probe of dust properties and magnetic field structure. Yet studies of external galaxies are hampered by foreground dust contribution. The study aims at separating the polarised signal from the Large Magellanic Cloud (LMC) from that of the Milky Way (MW) to construct a wide-field, spatially complete map of dust polarization using the Planck 353 GHz data. To estimate the foreground polarization direction, we used velocity gradients in H i spectral line data and assessed the performance of the output by comparing to starlight extinction polarization. We estimate the foreground intensity using the dust-to-gas correlation and the average intensity around the LMC and we assume the foreground polarization to be uniform and equal to the average of the MW around the galaxy to derive foreground I, Q, and U parameters. After foreground removal, the geometry of the plane-of-the-sky magnetic field tends to follow the structure of the atomic gas. This is notably the case along the molecular ridges extending south and south-east of the 30 Doradus star-forming complex and along the more diffuse southern arm extending towards the Small Magellanic Cloud. There is also an alignment between the magnetic field and the outer arm in the western part. The median polarization fraction in the LMC is slightly lower than that observed for the MW as well as the anti-correlation between the polarization angle dispersion function and the polarization fraction. Overall, polarization fraction distribution is similar to that observed in the MW. 
    more » « less
  4. We present the first degree-scale tomography map of the dusty magnetized interstellar medium (ISM) from stellar polarimetry and distance measurements. We used the RoboPol polarimeter at Skinakas Observatory to conduct a survey of the polarization of starlight in a region of the sky of about four square degrees. We propose a Bayesian method to decompose the stellar-polarization source field along the distance to invert the three-dimensional (3D) volume occupied by the observed stars. We used this method to obtain the first 3D map of the dusty magnetized ISM. Specifically, we produced a tomography map of the orientation of the plane-of-sky component of the magnetic field threading the diffuse, dusty regions responsible for the stellar polarization. For the targeted region centered on Galactic coordinates (l,b) ≈ (103.3°, 22.3°), we identified several ISM clouds. Most of the lines of sight intersect more than one cloud. A very nearby component was detected in the foreground of a dominant component from which most of the polarization signal comes and which we identified as being an intersection of the wall of the Local Bubble and the Cepheus Flare. Farther clouds, with a distance of up to 2 kpc, were similarly detected. Some of them likely correspond to intermediate-velocity clouds seen in HIspectra in this region of the sky. We found that the orientation of the plane-of-sky component of the magnetic field changes along distance for most of the lines of sight. Our study demonstrates that starlight polarization data coupled to distance measures have the power to reveal the great complexity of the dusty magnetized ISM in 3D and, in particular, to provide local measurements of the plane-of-sky component of the magnetic field in dusty regions. This demonstrates that the inversion of large data volumes, as expected from the PASIPHAEsurvey, will provide the necessary means to move forward in the modeling of the Galactic magnetic field and of the dusty magnetized ISM as a contaminant in observations of the cosmic microwave background polarization. 
    more » « less
  5. Abstract We present a detailed study of the magnetic field structure in the G111 molecular cloud, a ring-like filamentary cloud within the NGC 7538 region. Our analysis combines multiwavelength polarization data and molecular-line observations to investigate the magnetic field’s role in the cloud’s formation and evolution. We utilized interstellar dust polarization from the Planck telescope to trace large-scale field orientations, starlight extinction polarization from the Kanata telescope to probe the cloud’s magnetic field after foreground subtraction, and velocity gradients derived from CO isotopologues observed with the IRAM 30 m telescope to examine dense regions. Our results reveal a coherent yet spatially varying magnetic field within G111. The alignment between Planck-derived orientations and starlight extinction polarization highlights significant foreground dust contamination, which we correct through careful subtraction. The global alignment of the magnetic field with density structures suggests that the field is dynamically important in shaping the cloud. Variations in CO-derived orientations further suggest that local dynamical effects, such as gravitational interactions and turbulence, influence the cloud’s structure. The curved magnetic field along the dense ridges, coinciding with mid-infrared emission in WISE data, indicates shock compression, likely driven by stellar feedback or supernova remnants. Our findings support a scenario where G111’s morphology results from turbulent shock-driven compression, rather than simple gravitational contraction. The interplay between magnetic fields and external forces is crucial in shaping molecular clouds and regulating star formation. Future high-resolution observations will be essential to further constrain the magnetic field’s role in cloud evolution. 
    more » « less