skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SleepNet: Attention-Enhanced Robust Sleep Prediction using Dynamic Social Networks
Sleep behavior significantly impacts health and acts as an indicator of physical and mental well-being. Monitoring and predicting sleep behavior with ubiquitous sensors may therefore assist in both sleep management and tracking of related health conditions. While sleep behavior depends on, and is reflected in the physiology of a person, it is also impacted by external factors such as digital media usage, social network contagion, and the surrounding weather. In this work, we propose SleepNet, a system that exploits social contagion in sleep behavior through graph networks and integrates it with physiological and phone data extracted from ubiquitous mobile and wearable devices for predicting next-day sleep labels about sleep duration. Our architecture overcomes the limitations of large-scale graphs containing connections irrelevant to sleep behavior by devising an attention mechanism. The extensive experimental evaluation highlights the improvement provided by incorporating social networks in the model. Additionally, we conduct robustness analysis to demonstrate the system's performance in real-life conditions. The outcomes affirm the stability of SleepNet against perturbations in input data. Further analyses emphasize the significance of network topology in prediction performance revealing that users with higher eigenvalue centrality are more vulnerable to data perturbations.  more » « less
Award ID(s):
1840167 2047296
PAR ID:
10558075
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
8
Issue:
1
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Researchers have modeled contagion processes on social networks for wide ranging applications, including spreading of epidemics, financial defaults, actions such as joining social media sites, and rumors. So, too, researchers have developed a host of intervention methods to control harmful contagions on networks; among these approaches are node and edge removal, separating network communities, altering contagion properties, and introducing a second competing contagion. In this work, minimum dominating sets are used to identify blocking nodes—nodes that do not contract a contagion and therefore also do not assist in transmitting it. A novel, generalized method that utilizes integer linear programming to determine exact minimum dominating sets (which is an NP-hard problem) has been developed for a subgraph of any social network for any combination of covering distance and coverage requirement. Three social networks are used to understand and evaluate (i) the method itself and (ii) the efficacy of the blocking nodes that the method produces to stop contagion spread. 
    more » « less
  2. Motivated by a wide range of applications, research on agent-based models of contagion propagation over networks has attracted a lot of attention in the literature. Many of the available software systems for simulating such agent-based models require users to download software, build the executable and set up execution environments. Further, running the resulting executable may require access to high performance computing clusters. Our work describes an open access software system (NetSimS) that works under the “Modeling and Simulation as a Service” (MSaaS) paradigm. It allows users to run simulations by selecting agent-based models and parameters, initial conditions, and networks through a web interface. The system supports a variety of models and networks with millions of nodes and edges. In addition to the simulator, the system includes components that allow users to choose initial conditions for simulations in a variety of ways, to analyze the data generated through simulations, and to produce plots from the data. We describe the components of NetSimS and carry out a performance evaluation of the system. We also discuss two case studies carried out on large networks using the system. NetSimS is a major component within net.science, a cyberinfrastructure for network science. Index Terms—Agent-Based Simulation, Contagion, Networks, Modeling and Simulation as a Service, Cyberinfrastructure 
    more » « less
  3. Abstract—There are myriad real-life examples of contagion processes on human social networks, e.g., spread of viruses, information, and social unrest. Also, there are many methods to control or block contagion spread. In this work, we introduce a novel method of blocking contagions that uses nodes from dominating sets (DSs). To our knowledge, this is the first use of DS nodes to block contagions. Finding minimum dominating sets of graphs is an NP-Complete problem, so we generalize a well-known heuristic, enabling us to customize its execution. Our method produces a prioritized list of dominating nodes, which is, in turn, a prioritized list of blocking nodes. Thus, for a given network, we compute this list of blocking nodes and we use it to block contagions for all blocking node budgets, contagion seed sets, and parameter values of the contagion model. We report on computational experiments of the blocking efficacy of our approach using two mined networks. We also demonstrate the effectiveness of our approach by comparing blocking results with those from the high degree heuristic, which is a common standard in blocking studies. Index Terms—contagion blocking, dominating sets, threshold models, social networks, simulation, high degree heuristic 
    more » « less
  4. The ongoing COVID-19 pandemic has inflicted tremendous economic and societal losses. In the absence of pharmaceutical interventions, the population behavioral response, including situational awareness and adherence to non-pharmaceutical intervention policies, has a significant impact on contagion dynamics. Game-theoretic models have been used to reproduce the concurrent evolution of behavioral responses and disease contagion, and social networks are critical platforms on which behavior imitation between social contacts, even dispersed in distant communities, takes place. Such joint contagion dynamics has not been sufficiently explored, which poses a challenge for policies aimed at containing the infection. In this study, we present a multi-layer network model to study contagion dynamics and behavioral adaptation. It comprises two physical layers that mimic the two solitary communities, and one social layer that encapsulates the social influence of agents from these two communities. Moreover, we adopt high-order interactions in the form of simplicial complexes on the social influence layer to delineate the behavior imitation of individual agents. This model offers a novel platform to articulate the interaction between physically isolated communities and the ensuing coevolution of behavioral change and spreading dynamics. The analytical insights harnessed therefrom provide compelling guidelines on coordinated policy design to enhance the preparedness for future pandemics. 
    more » « less
  5. null (Ed.)
    Protest is a collective action problem and can be modeled as a coordination game in which people take an action with the potential to achieve shared mutual benefits. In game-theoretic contexts, successful coordination requires that people know each others' willingness to participate, and that this information is common knowledge among a sufficient number of people. We develop an agent-based model of collective action that was the first to combine social structure and individual incentives. Another novel aspect of the model is that a social network increases in density (i.e., new graph edges are formed) over time. The model studies the formation of common knowledge through local interactions and the characterizing social network structures. We use four real-world, data-mined social networks (Facebook, Wikipedia, email, and peer-to-peer networks) and one scale-free network, and conduct computational experiments to study contagion dynamics under different conditions. 
    more » « less