skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges to and importance of considering early and intermediate ontogenetic stages in mangrove forest recovery and restoration
Early to intermediate ontogenetic stages of trees are important in forest regeneration. However, these critical life stages are often overlooked due to survey intensity and impracticality and/or disinterest in characterizing early life stage cohorts. This problem is particularly pervasive in mangrove forests where visibility of smaller stature trees may be limited by tidal flooding and younger cohorts are particularly vulnerable to changing hydrologic and biogeochemical conditions driven by climate change. Lacking data on early life stages in mangrove forests makes it difficult to predict ecosystem degradation and inform habitat resilience and restoration in one of the earth's most valuable blue carbon ecosystems. We identify challenges to collecting empirical data on early to intermediate age classes in mangroves and provide solutions to characterizing these cohorts. We emphasize the importance of gathering these data for improved understanding of forest regeneration dynamics and provide multi-scalar solutions to quantify vegetation structure of mangrove forest.  more » « less
Award ID(s):
2025954
PAR ID:
10558218
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Marine Pollution Bulletin
Volume:
209
Issue:
PB
ISSN:
0025-326X
Page Range / eLocation ID:
117287
Subject(s) / Keyword(s):
Mangrove Sapling Seedling Regeneration Resilience
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mangroves play a crucial role in mitigating hurricane impacts in coastal ecosystems, and their adaptive traits enable regeneration and forest recovery following these disturbances. Yet, how species‐specific regeneration varies across life stages and interacts with environmental conditions is poorly understood. We quantified regeneration rates of three dominant species of mangrove seedlings and saplings (Avicennia germinans,Laguncularia racemosa, andRhizophora mangle) recovering from a major hurricane. We selected forests with varying light availability and phosphorus (P) gradients in the Everglades (Florida, USA). From 2020 to 2022, we measured biannual stem elongation, height, and density of seedlings and saplings, and collected porewater variables (salinity, sulfide, and inorganic nutrients) and continuous light intensity to assess species‐specific drivers of regeneration. Species‐specific growth rates, total height, and density varied across sites, driven by differences in porewater P and light. Growth rates ofR. mangleseedlings and bothR. mangleandL. racemosasaplings were influenced by light, whileA. germinansgrowth rates were unaffected. OnlyR. mangleandL. racemosasaplings were influenced by porewater P, while growth of both seedlings and saplings was unaffected by porewater salinity and sulfide. Mangrove regeneration post‐disturbance is explained by spatial differences in subsidies and stressors and the composition of species and life stages, underscoring complex regeneration strategies in mixed‐species forests. 
    more » « less
  2. null (Ed.)
    Bark beetles naturally inhabit forests and can cause large-scale tree mortality when they reach epidemic population numbers. A recent epidemic (1990s–2010s), primarily driven by mountain pine beetles ( Dendroctonus ponderosae ), was a leading mortality agent in western United States forests. Predictive models of beetle populations and their impact on forests largely depend on host related parameters, such as stand age, basal area, and density. We hypothesized that bark beetle attack patterns are also dependent on inferred beetle population densities: large epidemic populations of beetles will preferentially attack large-diameter trees, and successfully kill them with overwhelming numbers. Conversely, small endemic beetle populations will opportunistically attack stressed and small trees. We tested this hypothesis using 12 years of repeated field observations of three dominant forest species (lodgepole pine Pinus contorta , Engelmann spruce Picea engelmannii , and subalpine fir Abies lasiocarpa ) in subalpine forests of southeastern Wyoming paired with a Bayesian modeling approach. The models provide probabilistic predictions of beetle attack patterns that are free of assumptions required by frequentist models that are often violated in these data sets. Furthermore, we assessed seedling/sapling regeneration in response to overstory mortality and hypothesized that higher seedling/sapling establishment occurs in areas with highest overstory mortality because resources are freed from competing trees. Our results indicate that large-diameter trees were more likely to be attacked and killed by bark beetles than small-diameter trees during epidemic years for all species, but there was no shift toward preferentially attacking small-diameter trees in post-epidemic years. However, probabilities of bark beetle attack and mortality increased for small diameter lodgepole pine and Engelmann spruce trees in post-epidemic years compared to epidemic years. We also show an increase in overall understory growth (graminoids, forbs, and shrubs) and seedling/sapling establishment in response to beetle-caused overstory mortality, especially in lodgepole pine dominated stands. Our observations provide evidence of the trajectories of attack and mortality as well as early forest regrowth of three common tree species during the transition from epidemic to post-epidemic stages of bark beetle populations in the field. 
    more » « less
  3. In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating changes in mangrove forest structure is significant, as a loss or change in mangrove forest structure can lead to loss in the ecosystems services that they provide. In this study, we used lidar remote sensing technology and field data to assess damage to the South Florida mangrove forests from Hurricane Irma. Lidar data provided an opportunity to investigate changes in mangrove forests using 3D high-resolution data to assess hurricane-induced changes at different tree structure levels. Using lidar data in conjunction with field observations, we were able to model aboveground necromass (AGN; standing dead trees) on a regional scale across the Shark River and Harney River within Everglades National Park. AGN estimates were higher in the mouth and downstream section of Shark River and higher in the downstream section of the Harney River, with higher impact observed in Shark River. Mean AGN estimates were 46 Mg/ha in Shark River and 38 Mg/ha in Harney River and an average loss of 29% in biomass, showing a significant damage when compared to other areas impacted by Hurricane Irma and previous disturbances in our study region. 
    more » « less
  4. Mangrove forests along the coastlines of the tropical and sub-tropical western Atlantic are intermittently impacted by hurricanes and can be damaged by high-speed winds, high-energy storm surges, and storm surge sediment deposits that suffocate tree roots. This study quantified trends in damage, delayed mortality, and early signs of below- and aboveground recovery in mangrove forests in the Lower Florida Keys and Ten Thousand Islands following direct hits by Hurricane Irma in September 2017. Mangrove trees suffered 19% mortality at sites in the Lower Florida Keys and 11% in the Ten Thousand Islands 2–3 months post-storm; 9 months post-storm, mortality in these locations increased to 36% and 20%, respectively. Delayed mortality of mangrove trees was associated with the presence of a carbonate mud storm surge deposit on the forest floor. Mortality and severe branch damage were more common for mangrove trees than for mangrove saplings. Canopy coverage increased from 40% cover 1–2 months post-storm to 60% cover 3–6 months post-storm. Canopy coverage remained the same 9 months post-storm, providing light to an understory of predominantly Rhizophora mangle (red mangrove) seedlings. Soil shear strength was higher in the Lower Florida Keys and varied with depth; no significant trends were found in shear strength between fringe or basin plots. Rates of root growth, as assessed using root in-growth bags, were relatively low at 0.01–11.0 g m−2 month−1 and were higher in the Ten Thousand Islands. This study demonstrated that significant delayed mangrove mortality can occur 3–9 months after a hurricane has passed, with some mortality attributable to smothering by storm surge deposits. 
    more » « less
  5. Tropical forests are well known for their high woody plant diversity. Processes occurring at early life stages are thought to play a critical role in maintaining this high diversity and shaping the composition of tropical tree communities. To evaluate hypothesized mechanisms promoting tropical tree species coexistence and influencing composition, we initiated a census of woody seedlings and small saplings in the permanent 50-ha Forest Dynamics Plot (FDP) on Barro Colorado Island (BCI), Panama. Situated in old-growth, lowland tropical moist forest, the BCI FDP was originally established in 1980 to monitor trees and shrubs ≥1 cm diameter at 1.3 m above ground (dbh) at ca. 5-yr intervals. However, critical data on the dynamics occurring at earlier life stages were initially lacking. Therefore, in 2001 we established a 1-m2 seedling plot in the center of every 5 x 5 m section of the BCI FDP. All freestanding woody individuals ≥20 cm tall and <1 cm dbh (hereafter referred to as seedlings) were tagged, mapped, measured, and identified to species in 19,313 1-m2 seedling plots. Because seedling dynamics are rapid, we censused these seedling plots every 1–2 years. Here we present data from the 14 censuses of these seedling plots conducted between the initial census in 2001 to the most recent census, in 2018. This data set includes nearly 1M observations of ~185,000 individuals of >400 tree, shrub, and liana species. These data will permit spatially-explicit analyses of seedling distributions, recruitment, growth, and survival for hundreds of woody plant species. In addition, the data presented here can be linked to openly-available, long-term data on the dynamics of trees and shrubs ≥1cm dbh in the BCI FDP, as well as existing data sets from the site on climate, canopy structure, phylogenetic relatedness, functional traits, soil nutrients, and topography. 
    more » « less