skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Statistics of Energy in Isothermal Supersonic Turbulence
Abstract Supersonic isothermal turbulence is a common process in astrophysical systems. In this work, we explore the energy in such systems. We show that the conserved energy is the sum of the kinetic energy (K) and Helmholtz free energy (F). We develop analytic predictions for the probability distributions,P(F) andP(K), as well as their nontrivial joint distribution,P(F,K). We verify these predictions with a suite of driven turbulence simulations, finding excellent agreement. The turbulence simulations were performed at Mach numbers ranging from 1 to 8, and three modes of driving: purely solenoidal, purely compressive, and mixed. We find thatP(F) is discontinuous atF= 0, with the discontinuity increasing with Mach number and compressive driving.P(K) resembles a lognormal with a negative skew. The joint distribution,P(F,K), shows a bimodal distribution, with gas either existing at highFand highKor at lowFand lowK.  more » « less
Award ID(s):
2009870
PAR ID:
10559133
Author(s) / Creator(s):
;
Publisher / Repository:
Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
969
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
94
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In star-forming clouds, high velocity flow gives rise to large fluctuations of density. In this work, we explore the correlation between velocity magnitude (speed) and density. We develop an analytic formula for the joint probability distribution function (PDF) of density and speed, and discuss its properties. In order to develop an accurate model for the joint PDF, we first develop improved models of the marginalized distributions of density and speed. We confront our results with a suite of 12 supersonic isothermal simulations with resolution of $1024^3$ cells in which the turbulence is driven by 3 different forcing modes (solenoidal, mixed, and compressive) and 4 rms Mach numbers (1, 2, 4, 8). We show, that for transsonic turbulence, density and speed are correlated to a considerable degree and the simple assumption of independence fails to accurately describe their statistics. In the supersonic regime, the correlations tend to weaken with growing Mach number. Our new model of the joint and marginalized PDFs are a factor of 3 better than uncorrelated, and provides insight into this important process. 
    more » « less
  2. Abstract We study the properties of sub-Alfvénic magnetohydrodynamic (MHD) turbulence, i.e., turbulence with Alfvén mach numberMA=VL/VA< 1, whereVLis the velocity at the injection scale andVAis the Alfvén velocity. We demonstrate that MHD turbulence can have different properties, depending on whether it is driven by velocity or magnetic fluctuations. If the turbulence is driven by isotropic bulk forces acting upon the fluid, i.e., is velocity driven, in an incompressible conducting fluid we predict that the kinetic energy is M A 2 times larger than the energy of magnetic fluctuations. This effect arises from the long parallel wavelength tail of the forcing, which excites modes withk/k<MA. We also predict that as the MHD turbulent cascade reaches the strong regime, the energy of slow modes exceeds the energy of Alfvén modes by a factor M A 1 . These effects are absent if the turbulence is driven through magnetic fluctuations at the injection scale. We confirm our predictions with numerical simulations. Since the assumption of magnetic and kinetic energy equipartition is at the core of the Davis–Chandrasekhar–Fermi (DCF) approach to measuring magnetic field strength in sub-Alfvénic turbulence, we conclude that the DCF technique is not universally applicable. In particular, we suggest that the dynamical excitation of long azimuthal wavelength modes in the galactic disk may compromise the use of the DCF technique. We discuss alternative expressions that can be used to obtain magnetic field strength from observations and consider ways of distinguishing the cases of velocity and magnetically driven turbulence using observational data. 
    more » « less
  3. ABSTRACT Precipitation of cold gas due to thermal instability in both galaxy clusters and the circumgalactic medium may regulate active galactic nucleus feedback. We investigate thermal instability in idealized simulations of the circumgalactic medium with a parameter study of over 600 three-dimensional hydrodynamic simulations of stratified turbulence with cooling, each evolved for 10 Gyr. The entropy profiles are maintained in a steady state via an idealized ‘thermostat’ process, consistent with galaxy cluster entropy profiles. In the presence of external turbulent driving, we find cold gas precipitates, with a strong dependence whether the turbulent driving mechanism is solenoidal, compressive, or purely vertical. In the purely vertical turbulent driving regime, we find that significant cold gas may form when the cooling time to free-fall time $$t_{\rm cool} / t_{\text{ff}} \lesssim 5$$. Our simulations with a ratio of $$t_{\rm cool} / t_{\text{ff}} \sim 10$$ do not precipitate under any circumstances, perhaps because the thermostat mechanism we use maintains a significant non-zero entropy gradient. 
    more » « less
  4. ABSTRACT We investigate the driving of MHD turbulence by gravitational contraction using simulations of an initially spherical, isothermal, magnetically supercritical molecular cloud core with transonic and trans-Alfvénic turbulence. We perform a Helmholtz decomposition of the velocity field, and investigate the evolution of its solenoidal and compressible parts, as well as of the velocity component along the gravitational acceleration vector, a proxy for the infall component of the velocity field. We find that (1) In spite of being supercritical, the core first contracts to a sheet perpendicular to the mean magnetic field, and the sheet itself collapses. (2) The solenoidal component of the turbulence remains at roughly its initial level throughout the simulation, while the compressible component increases continuously, implying that turbulence does not dissipate towards the centre of the core. (3) The distribution of simulation cells in the B–ρ plane occupies a wide triangular region at low densities, bounded below by the expected trend for fast MHD waves (B ∝ ρ, applicable for high-local Alfvénic Mach number MA) and above by the trend expected for slow waves (B ∼ constant, applicable for low local MA). At high densities, the distribution follows a single trend $$B \propto \rho ^{\gamma _{\rm eff}}$$, with 1/2 < γeff < 2/3, as expected for gravitational compression. (4) The mass-to-magnetic flux ratio λ increases with radius r due to the different scalings of the mass and magnetic flux with r. At a fixed radius, λ increases with time due to the accretion of material along field lines. (5) The solenoidal energy fraction is much smaller than the total turbulent component, indicating that the collapse drives the turbulence mainly compressibly, even in directions orthogonal to that of the collapse. 
    more » « less
  5. null (Ed.)
    ABSTRACT We report three-dimensional hydrodynamical simulations of shocks ($${\cal M_{\rm shock}}\ge 4$$) interacting with fractal multicloud layers. The evolution of shock–multicloud systems consists of four stages: a shock-splitting phase in which reflected and refracted shocks are generated, a compression phase in which the forward shock compresses cloud material, an expansion phase triggered by internal heating and shock re-acceleration, and a mixing phase in which shear instabilities generate turbulence. We compare multicloud layers with narrow ($$\sigma _{\rho }=1.9\bar{\rho }$$) and wide ($$\sigma _{\rho }=5.9\bar{\rho }$$) lognormal density distributions characteristic of Mach ≈ 5 supersonic turbulence driven by solenoidal and compressive modes. Our simulations show that outflowing cloud material contains imprints of the density structure of their native environments. The dynamics and disruption of multicloud systems depend on the porosity and the number of cloudlets in the layers. ‘Solenoidal’ layers mix less, generate less turbulence, accelerate faster, and form a more coherent mixed-gas shell than the more porous ‘compressive’ layers. Similarly, multicloud systems with more cloudlets quench mixing via a shielding effect and enhance momentum transfer. Mass loading of diffuse mixed gas is efficient in all models, but direct dense gas entrainment is highly inefficient. Dense gas only survives in compressive clouds, but has low speeds. If normalized with respect to the shock-passage time, the evolution shows invariance for shock Mach numbers ≥10 and different cloud-generating seeds, and slightly weaker scaling for lower Mach numbers and thinner cloud layers. Multicloud systems also have better convergence properties than single-cloud systems, with a resolution of eight cells per cloud radius being sufficient to capture their overall dynamics. 
    more » « less