Disfluency detection and classification on children’s speech has a great potential for teaching reading skills. Word-level assessment of children’s speech can help teachers to effectively gauge their students’ progress. Hence, we propose a novel attention-based model to perform word-level disfluency detection and classification in a fully end-to-end (E2E) manner making it fast and easy to use. We develop a word-level disfluency annotation scheme using which we annotate a dataset of children read speech, the reading races dataset (READR). We also annotate disfluencies in the existing CMU Kids corpus. The proposed model significantly outperforms traditional cascaded baselines, which use forced alignments, on both datasets. To deal with the inevitable class-imbalance in the datasets, we propose a novel technique called HiDeC (Hierarchical Detection and Classification) which yields a detection improvement of 23% and 16% and a classification improvement of 3.8% and 19.3% relative F1-score on the READR and CMU Kids datasets respectively.
more »
« less
End-To-End Real Time Tracking of Children’s Reading with Pointer Network
In this work, we explore how a real time reading tracker can be built efficiently for children’s voices. While previously proposed reading trackers focused on ASR-based cascaded approaches, we propose a fully end-to-end model making it less prone to lags in voice tracking. We employ a pointer network that directly learns to predict positions in the ground truth text conditioned on the streaming speech. To train this pointer network, we generate ground truth training signals by using forced alignment between the read speech and the text being read on the training set. Exploring different forced alignment models, we find a neural attention based model is at least as close in alignment accuracy to the Montreal Forced Aligner, but surprisingly is a better training signal for the pointer network. Our results are reported on one adult speech data (TIMIT) and two children’s speech datasets (CMU Kids and Reading Races). Our best model can accurately track adult speech with 87.8% accuracy and the much harder and disfluent children’s speech with 77.1% accuracy on CMU Kids data and a 65.3% accuracy on the Reading Races dataset.
more »
« less
- Award ID(s):
- 2008043
- PAR ID:
- 10560473
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 2379-190X
- ISBN:
- 979-8-3503-4485-1
- Page Range / eLocation ID:
- 11731 to 11735
- Format(s):
- Medium: X
- Location:
- Seoul, Korea, Republic of
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IEEE SIGNAL PROCESSING SOCIETY (Ed.)This paper 1 presents a novel system which utilizes acoustic, phonological, morphosyntactic, and prosodic information for binary automatic dialect detection of African American English. We train this system utilizing adult speech data and then evaluate on both children’s and adults’ speech with unmatched training and testing scenarios. The proposed system combines novel and state-of-the-art architectures, including a multi-source transformer language model pre-trained on Twitter text data and fine-tuned on ASR transcripts as well as an LSTM acoustic model trained on self-supervised learning representations, in order to learn a comprehensive view of dialect. We show robust, explainable performance across recording conditions for different features for adult speech, but fusing multiple features is important for good results on children’s speech.more » « less
-
Dialog history enhances downstream classification performance in both speech and text based dialog systems. However, there still exists a gap in dialog history integration in a fully end-to-end (E2E) spoken dialog system (SDS) versus a textual dia- log system. Text-based dialog systems use large language models (LLMs) to encode long-range dependencies by attending to the entire conversation as a contiguous token sequence. This is not possible in an E2E SDS, as speech sequences can be intractably long. We propose a convolution subsampling approach to make the speech sequence of a conversation tractable and use a conformer to attend to the speech-based conversation in a fine-grained manner. This model is further enhanced via a conversation-level knowledge transfer from a LLM using a token-level alignment strategy. Finetuning the E2E model pretrained this way gives significant gains, of up to 8%, over strong non-contextual baselines in the E2E dialog act classification task on two datasets.more » « less
-
Children’s automatic speech recognition (ASR) is always difficult due to, in part, the data scarcity problem, especially for kindergarten-aged kids. When data are scarce, the model might overfit to the training data, and hence good starting points for training are essential. Recently, meta-learning was proposed to learn model initialization (MI) for ASR tasks of different languages. This method leads to good performance when the model is adapted to an unseen language. How-ever, MI is vulnerable to overfitting on training tasks (learner overfitting). It is also unknown whether MI generalizes to other low-resource tasks. In this paper, we validate the effectiveness of MI in children’s ASR and attempt to alleviate the problem of learner overfitting. To achieve model-agnostic meta-learning (MAML), we regard children’s speech at each age as a different task. In terms of learner overfitting, we propose a task-level augmentation method by simulating new ages using frequency warping techniques. Detailed experiments are conducted to show the impact of task augmentation on each age for kindergarten-aged speech. As a result, our approach achieves a relative word error rate (WER) improvement of 51% over the baseline system with no augmentation or initialization.more » « less
-
Observable reading behavior, the act of moving the eyes over lines of text, is highly stereotyped among the users of a language, and this has led to the development of reading detectors–methods that input windows of sequential fixations and output predictions of the fixation behavior during those windows being reading or skimming. The present study introduces a newmethod for reading detection using Region Ranking SVM (RRSVM). An SVM-based classifier learns the local oculomotor features that are important for real-time reading detection while it is optimizing for the global reading/skimming classification, making it unnecessary to hand-label local fixation windows for model training. This RRSVM reading detector was trained and evaluated using eye movement data collected in a laboratory context, where participants viewed modified web news articles and had to either read them carefully for comprehension or skim them quickly for the selection of keywords (separate groups). Ground truth labels were known at the global level (the instructed reading or skimming task), and obtained at the local level in a separate rating task. The RRSVM reading detector accurately predicted 82.5% of the global (article-level) reading/skimming behavior, with accuracy in predicting local window labels ranging from 72-95%, depending on how tuned the RRSVM was for local and global weights. With this RRSVM reading detector, a method now exists for near real-time reading detection without the need for hand-labeling of local fixation windows. With real-time reading detection capability comes the potential for applications ranging from education and training to intelligent interfaces that learn what a user is likely to know based on previous detection of their reading behavior.more » « less
An official website of the United States government

