Abstract Arctic rodents influence tundra plant communities by altering species diversity, structure, and nutrient dynamics. These dynamics are intensified during rodent population peaks. Plants are known to induce defenses in response to rodent herbivory. However, changes in plant tissue digestibility may also play a role in deterring rodents or impacting their survival. This study presents a first look at the impacts of rodent herbivory on crude protein (CP) and acid detergent fiber (ADF) of two of the most common graminoid species (Carex nigraandDeschampsia cespitosa) and graminoid genus (Calamagrostisspp.) in the tundra meadows of the Varanger Peninsula, Norway. We selected 32 experimental plots representing both rodent-disturbed and adjacent, undisturbed control graminoid patches. In the summer of a rodent population peak, the disturbed plots had higher ADF (28.5%) values than less disturbed ones (26.6%), controlling for plant species. We also found differences between species, withCarex nigrahaving the lowest fiber content (24.3%, ADF) and highest protein content (18.2% CP)—making it the most palatable species. These results show that rodent activity can potentially alter plant food quality, suggesting that increasing fiber content may be a defensive response to herbivory.
more »
« less
Small rodent disturbance impact on Arctic graminoid forage quality.
Abstract Arctic rodents influence tundra plant communities by altering species diversity, structure, and nutrient dynamics. These dynamics are intensified during rodent population peaks. Plants are known to induce defenses in response to rodent herbivory. However, changes in plant tissue digestibility may also play a role in deterring rodents or impacting their survival. This study presents a first look at the impacts of rodent herbivory on crude protein (CP) and acid detergent fiber (ADF) of three of the most common graminoid species (Calamagrostis sp.,Carex nigraandDeschampsia cespitosa) in the tundra meadows of the Varanger Peninsula, Norway. We selected 32 experimental plots representing both rodent-disturbed and adjacent, undisturbed control graminoid patches. During a rodent population peak, the disturbed plots had higher ADF (28.5%) values than less disturbed ones (26.6%), controlling for plant species. We also found differences between species, withCarex nigrahaving the lowest fiber content (24.3%, ADF) and highest protein content (18.2% CP) – making it the most palatable species. These results show that rodent activity can potentially alter plant food quality, suggesting that increased fiber content may be a defensive adaptation against herbivory.
more »
« less
- Award ID(s):
- 2126796
- PAR ID:
- 10560503
- Publisher / Repository:
- Research Square
- Date Published:
- Format(s):
- Medium: X
- Institution:
- Research Square
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Grasslands, by definition, are dominated by graminoids. Nevertheless, forbs also make up a substantial part of vascular plant diversity in grasslands and are important resources of mammalian herbivores. However, forb recruitment is constrained by successful dominant graminoids, limiting access to safe sites for germination. Disturbances created by herbivores can reduce graminoid dominance and favor forb recruitment. Here we hypothesize that intense disturbance, such as that caused by megaherbivores, promotes safe sites for forbs in such graminoid‐dominated grasslands, whereas disturbance by today's herbivores, such as small rodents, may not be sufficiently intense. We selected a total of 80 plots with either of four successful graminoid species in tundra grasslands of the Varanger Peninsula, Norway. The graminoid species were silicon‐poor or rich, and of either mat‐ or bunch‐growth form. Plots were further selected in both rodent disturbed and undisturbed areas. We manually removed the dominant graminoid in half of the plots, mimicking megaherbivore disturbance by reducing both shading capabilities and belowground rhizome and root systems. Results show that forb recruitment was significantly enhanced one year following the manual removal of all four graminoids. This effect on forb recruitment was similar among the four graminoids even though they were associated with distinct plant communities. The rodent disturbance did not enhance forb recruitment. In plots with rodent‐disturbed graminoids, the manual removal enhanced forb recruitment only in plots with silicon‐rich graminoids. Forb recruitment was further enhanced by higher levels of initial species richness, initial forb abundance, and soil moisture. Our findings support the hypothesis that intense disturbance, simulating megaherbivore effects on dominant graminoids, significantly enhances forb recruitment.more » « less
-
Wild Bornean orangutans experience fluctuations in the availability of their preferred food, fruit. During periods of low fruit availability, orangutans rely on fallback foods which are expected to be higher in fiber and generally lower in free simple sugars. However, it is not clear whether there is a consistent relationship between fiber content and the content of other nutrients. Here, we examine acid detergent fiber (ADF) content of 101 plant foods consumed by orangutans in Gunung Palung National Park, West Kalimantan, Indonesia, and the correlation between ADF and other important plant macronutrients. Samples were collected during full-day behavioral follows between 1994-2001. Samples were analyzed in triplicate through a reflux apparatus, which quantified ADF proportion by weight. An ANOVA revealed significant differences between ADF concentrations of different plant parts (F(5)=20.89, p < 0.001). Post-hoc analyses (α= 0.005) determined that bark had a significantly higher ADF concentration than pulp and seeds (p<0.001), leaves had a significantly higher ADF concentration than seeds (p<0.001), and whole fruit had a significantly higher ADF concentration than pulp or seeds (p<0.001). We found a negative correlation between free simple sugar concentration and ADF (R = -0.63, p<0.001). However, there was no significant correlation between ADF and protein (R=-0.14, p=0.17) or lipid (R 0.134, p=0.19) content. Our findings corroborate work showing that bark and leaves are particularly high in ADF. However, they underscore the fact that determining dietary quality is complex, and that food items that are high in fiber may still be good sources of non-carbohydrate energy. National Science Foundation (BCS-1638823, BCS-0936199, 1540360, 9414388); National Geographic Society; US Fish and Wildlife (F15AP00812, F12AP00369, 98210-8-G661); Leakey Foundation; Disney Wildlife Conservation Fund; Wenner-Gren Foundation; Nacey-Maggioncalda Foundation; Conservation, Food and Healthmore » « less
-
Abstract Hurricanes cause dramatic changes to forests by opening the canopy and depositing debris onto the forest floor. How invasive rodent populations respond to hurricanes is not well understood, but shifts in rodent abundance and foraging may result from scarce fruit and seed resources that follow hurricanes. We conducted studies in a wet tropical forest in Puerto Rico to better understand how experimental (canopy trimming experiment) and natural (Hurricane Maria) hurricane effects alter populations of invasive rodents (Rattus rattus[rats] andMus musculus[mice]) and their foraging behaviors. To monitor rodent populations, we used tracking tunnels (inked and baited cards inside tunnels enabling identification of animal visitors' footprints) within experimental hurricane plots (arborist trimmed in 2014) and reference plots (closed canopy forest). To assess shifts in rodent foraging, we compared seed removal of two tree species (Guarea guidoniaandPrestoea acuminata) between vertebrate‐excluded and free‐access treatments in the same experimental and reference plots, and did so 3 months before and 9 months after Hurricane Maria (2017). Trail cameras were used to identify animals responsible for seed removal. Rat incidences generated from tracking tunnel surveys indicated that rat populations were not significantly affected by experimental or natural hurricanes. Before Hurricane Maria there were no mice in the forest interior, yet mice were present in forest plots closest to the road after the hurricane, and their forest invasion coincided with increased grass cover resulting from open forest canopy. Seed removal ofGuareaandPrestoeaacross all plots was rat dominated (75%–100% rat‐removed) and was significantly less after than before Hurricane Maria. However, following Hurricane Maria, the experimental hurricane treatment plots of 2014 had 3.6 times greater seed removal by invasive rats than did the reference plots, which may have resulted from rats selecting post‐hurricane forest patches with greater understory cover for foraging. Invasive rodents are resistant to hurricane disturbance in this forest. Predictions of increased hurricane frequency from expected climate change should result in forest with more frequent periods of grassy understories and mouse presence, as well as with heightened rat foraging for fruit and seed in preexisting areas of disturbance.more » « less
-
In the Yukon-Kuskokwim (YK) Delta, geese create grazing lawns in Carex subspathacea meadows. Geese annually maintain the grazing lawns, resulting in different aboveground morphological expressions for grazed Carex subspathacea compared to ungrazed Carex subspathacea. Grazed C. subspathacea tends to grow to an average of 1.5 centimeters (cm) in height and has a floret growth form, while ungrazed C. subspathacea reaches an average height of nearly 15.5 cm. Additionally, grazed C. subspathacea has lower Carbon : Nitrogen (C:N) content than ungrazed C. subspathacea. Furthermore, both the physical alterations to Carex subspathacea and the changes to the soil physiochemical environment caused by grazing suggest that aboveground herbivory may affect root trait expression of C. subspathacea, which in turn may influence biogeochemical processes such as soil respiration and decomposition rates. This data set contains information on Carex subspathacea root traits, including root morphology (total length, surface area, and volume), root exudates (dissolved organic carbon concentration), and root chemistry (carbon, nitrogen, phosphorus, lignin, cellulose, and acid fiber detergent) collected in Western Alaska's Yukon-Kuskokwim's delta. The samples were collected from two Carex subspathacea habitat types (grazed or ungrazed).more » « less
An official website of the United States government

