Metal-organic frameworks (MOFs), made from metal ions and organic linkers, are promising materials for drug delivery due to their porous morphology. These components significantly affect drug loading, but the wide variety of irons and linkers makes it challenging to systematically evaluate their drug loading capacities. Machine Learning (ML) provides predictive models for drug loading based on properties such as ion type, linker structure, and MOFs morphology (e.g. surface area). However, the accuracy of these models is affected by hyperparameters. To improve model performance, this work develops a genetic algorithm (GA)-based optimization approach to build ML models for predicting drug loading rates. Our results demonstrate the predictability and generalizability of this approach for estimating the drug-loading capacities of different material-drug combinations.
more »
« less
Boosting predictive accuracy of single particle models for lithium-ion batteries using machine learning
The accuracy of single particle (SP) models for lithium-ion batteries at high C-rates is constrained by lithium concentration gradients in the electrolyte, which affect ionic conductivity, overpotential, and reaction rates. This study addresses these limitations using extreme gradient boosting machine learning (ML). By training our ML model with data from a comprehensive electrochemical (P2D) model and performing sensitivity analysis on key battery parameters, we enhance predictive accuracy. Compared to conventional SP and P2D models under constant current loading, our ML-based SP model achieves similar predictive accuracy to P2D, with significant improvements in computational efficiency. Additionally, the ML-based SP model demonstrates improved predictive accuracy under dynamic loading conditions, providing a practical framework for improving battery management and safety.
more »
« less
- Award ID(s):
- 2028992
- PAR ID:
- 10560574
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 125
- Issue:
- 14
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wang, Dong (Ed.)Lithium-ion batteries have been extensively used to power portable electronics, electric vehicles, and unmanned aerial vehicles over the past decade. Aging decreases the capacity of Lithium-ion batteries. Therefore, accurate remaining useful life (RUL) prediction is critical to the reliability, safety, and efficiency of the Lithium-ion battery-powered systems. However, battery aging is a complex electrochemical process affected by internal aging mechanisms and operating conditions (e.g., cycle time, environmental temperature, and loading condition). In this paper, a physics-informed machine learning method is proposed to model the degradation trend and predict the RUL of Lithium-ion batteries while accounting for battery health and operating conditions. The proposed physics-informed long short-term memory (PI-LSTM) model combines a physics-based calendar and cycle aging (CCA) model with an LSTM layer. The CCA model measures the aging effect of Lithium-ion batteries by combining five operating stress factor models. The PI-LSTM uses an LSTM layer to learn the relationship between the degradation trend determined by the CCA model and the online monitoring data of different cycles (i.e., voltage, current, and cell temperature). After the degradation pattern of a battery is estimated by the PI-LSTM model, another LSTM model is then used to predict the future degradation and remaining useful life (RUL) of the battery by learning the degradation trend estimated by the PI-LSTM model. Monitoring data of eleven Lithium-ion batteries under different operating conditions was used to demonstrate the proposed method. Experimental results have shown that the proposed method can accurately model the degradation behavior as well as predict the RUL of Lithium-ion batteries under different operating conditions.more » « less
-
Abstract Electric vehicles (EVs) have emerged as an environmentally friendly alternative to conventional fuel vehicles. Lithium-ion batteries are the major energy source for EVs, but they degrade under dynamic operating conditions. Accurate estimation of battery state of health is important for sustainability as it quantifies battery condition, influences reuse possibilities, and helps alleviate capacity degradation, which finally impacts battery lifespan and energy efficiency. In this paper, a self-attention graph neural network combined with long short-term memory (LSTM) is introduced by focusing on using temporal and spatial dependencies in battery data. The LSTM layer utilizes a sliding window to extract temporal dependencies in the battery health factors. Two different approaches to the graph construction layer are subsequently developed: health factor-based and window-based graphs. Each approach emphasizes the interconnections between individual health factors and exploits temporal features in a deeper way, respectively. The self-attention mechanism is used to compute the adjacent weight matrix, which measures the strength of interactions between nodes in the graph. The impact of the two graph structures on the model performance is discussed. The model accuracy and computational cost of the proposed model are compared with the individual LSTM and gated recurrent unit (GRU) models.more » « less
-
IntroductionThe objective of this study is to develop predictive models for rocking-induced permanent settlement in shallow foundations during earthquake loading using stacking, bagging and boosting ensemble machine learning (ML) and artificial neural network (ANN) models. MethodsThe ML models are developed using supervised learning technique and results obtained from rocking foundation experiments conducted on shaking tables and centrifuges. The overall performance of ML models are evaluated using k-fold cross validation tests and mean absolute percentage error (MAPE) and mean absolute error (MAE) in their predictions. ResultsThe performances of all six nonlinear ML models developed in this study are relatively consistent in terms of prediction accuracy with their average MAPE varying between 0.64 and 0.86 in final k-fold cross validation tests. DiscussionThe overall average MAE in predictions of all nonlinear ML models are smaller than 0.006, implying that the ML models developed in this study have the potential to predict permanent settlement of rocking foundations with reasonable accuracy in practical applications.more » « less
-
Machine learning (ML) methods are increasingly being applied to analyze biological signals. For example, ML methods have been successfully applied to the human electroencephalogram (EEG) to classify neural signals as pathological or non-pathological and to predict working memory performance in healthy and psychiatric patients. ML approaches can quickly process large volumes of data to reveal patterns that may be missed by humans. This study investigated the accuracy of ML methods at classifying the brain’s electrical activity to cognitive events, i.e., event-related brain potentials (ERPs). ERPs are extracted from the ongoing EEG and represent electrical potentials in response to specific events. ERPs were evoked during a visual Go/NoGo task. The Go/NoGo task requires a button press on Go trials and response withholding on NoGo trials. NoGo trials elicit neural activity associated with inhibitory control processes. We compared the accuracy of six ML algorithms at classifying the ERPs associated with each trial type. The raw electrical signals were fed to all ML algorithms to build predictive models. The same raw data were then truncated in length and fitted to multiple dynamic state space models of order nx using a continuous-time subspace-based system identification algorithm. The 4nx numerator and denominator parameters of the transfer function of the state space model were then used as substitutes for the data. Dimensionality reduction simplifies classification, reduces noise, and may ultimately improve the predictive power of ML models. Our findings revealed that all ML methods correctly classified the electrical signal associated with each trial type with a high degree of accuracy, and accuracy remained high after parameterization was applied. We discuss the models and the usefulness of the parameterization.more » « less
An official website of the United States government

