Abstract Electrical and mechanical integration approaches are essential for emerging hybrid electronics that must robustly bond rigid electrical components with flexible circuits and substrates. However, flexible polymeric substrates and circuits cannot withstand the high temperatures used in traditional electronic processing. This constraint requires new strategies to create flexible materials that simultaneously achieve high electrical conductivity, strong adhesion, and processibility at low temperature. Here, an electrically conductive adhesive is introduced that is flexible, electrically conductive (up to 3.25×105S m−1) without sintering or high temperature post‐processing, and strongly adhesive to various materials common to flexible and stretchable circuits (fracture energy 350 <Gc< 700 J m−2). This is achieved through a multiphase soft composite consisting of an elastomeric and adhesive epoxy network with dispersed liquid metal droplets that are bridged by silver flakes, which form a flexible and conductive percolated network. These inks can be processed through masked deposition and direct ink writing at room temperature. This enables soft conductive wiring and robust integration of rigid components onto flexible substrates to create hybrid electronics for emerging applications in soft electronics, soft robotics, and multifunctional systems.
more »
« less
Soft electronic vias and interconnects through rapid three-dimensional assembly of liquid metal microdroplets
The development of soft electronics requires methods to connect flexible and stretchable circuits. With conventional rigid electronics, vias are typically used to electrically connect circuits with multilayered architectures, increasing device integration and functionality. However, creating vias using soft conductors leads to additional challenges. Here we show that soft vias and planar interconnects can be created through the directed stratification of liquid metal droplets with programmed photocuring. Abnormalities that occur at the edges of a mask during ultraviolet exposure are leveraged to create vertical stair-like architectures of liquid metal droplets within the photoresin. The liquid metal droplets in the uncured (liquid) resin rapidly settle, assemble and then are fully cured, forming electrically conductive soft vias at multiple locations throughout the circuit in a parallel and spatially tunable manner. Our three-dimensional selective stratification method can also form seamless connections with planar interconnects, for in-plane and through-plane electrical integration.
more »
« less
- Award ID(s):
- 2238754
- PAR ID:
- 10560912
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Electronics
- Volume:
- 7
- Issue:
- 11
- ISSN:
- 2520-1131
- Page Range / eLocation ID:
- 1015 to 1024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gallium‐based liquid metal alloys (GaLMAs) have widespread applications ranging from soft electronics, energy devices, and catalysis. GaLMAs can be transformed into liquid metal emulsions (LMEs) to modify their rheology for facile patterning, processing, and material integration for GaLMA‐based device fabrication. One drawback of using LMEs is reduced electrical conductivity owing to the oxides that form on the surface of dispersed liquid metal droplets. LMEs thus need to be activated by coalescing liquid metal droplets into an electrically conductive network, which usually involves techniques that subject the LME to harsh conditions. This study presents a way to coalesce these droplets through a chemical reaction at mild temperatures (T∼ 80 °C). Chemical activation is enabled by adding halide compounds into the emulsion that chemically etch the oxide skin on the surface of dispersed droplets of eutectic gallium indium (eGaIn). LMEs synthesized with halide activators can achieve electrical conductivities close to bulk liquid metal (2.4 × 104S cm−1) after being heated. 3D printable chemically coalescing LME ink formulations are optimized by systematically exploring halide activator type and concentration, along with mixing conditions, while maximizing for electrical conductivity, shape retention, and compatibility with direct ink writing (DIW). The utility of this ink is demonstrated in a hybrid 3D printing process to create a battery‐integrated light emitting diode array, followed by a nondestructive low temperature heat activation that produces a functional device.more » « less
-
Abstract Conductive adhesives are required for the integration of dissimilar material components to create soft electronic and robotic systems. Here, a heterogeneous liquid metal‐based conductive adhesive is developed that reversibly attaches to diverse surfaces with high stretchability (>100% strain), low modulus (<100 kPa), and strain‐invariant electrical conductivity. This SofT integrated composite with tacK through liquid metal (STICK‐LM) adhesive consists of a heterogeneous graded film with a liquid metal‐rich side that is embossed at prescribed locations for electrical conductivity and an electrically insulating adhesive side for integration. Adhesion behavior is tuned for adhesion energies > 70 Jm−2(≈ 25x enhancement over unmodified composites) and described with a viscoelastic analysis, providing design guidelines for controllable yet reversible adhesion in electrically conductive systems. The architecture of STICK‐LM adhesives provides anisotropic and heterogeneous electrical conductivity and enables direct integration into soft functional systems. This is demonstrated with deformable fuses for robotic joints, repositionable electronics that rapidly attach on curvilinear surfaces, and stretchable adhesive conductors with nearly constant electrical resistance. This study provides a methodology for electrically conductive, reversible adhesives for electrical and mechanical integration of multicomponent systems in emerging technologies.more » « less
-
Abstract Multi‐layer electrical interconnects are critical for the development of integrated soft wearable electronic systems, in which functional devices from different layers need to be connected together by vertical interconnects. In this work, electrohydrodynamic (EHD) printing technology is studied to achieve multi‐layer flexible and stretchable electronics by direct printing vertical interconnects as vertical interconnect accesses (VIAs) using a low‐melting‐point metal alloy. The EHD printed metallic vertical interconnection represents a promising way for the direct fabrication of multilayer integrated electronics with metallic conductivity and excellent flexibility and stretchability. By controlling the printing conditions, vertical interconnects that can bridge different heights can be fabricated. To achieve reliable VIA connections under bending and stretching conditions, an epoxy protective structure is printed around the VIA interconnects to form a core‐shell structure. A stable electrical response is achieved under hundreds of bending cycles and during stretching/releasing cycles in a large range of tensile strain (0–40%) for the printed conductors with VIA interconnects. A few multi‐layer devices, including a multiple layer heater, and a pressure‐based touch panel are fabricated to demonstrate the capability of the EHD printing for the direct fabrication of vertical metallic VIA interconnects for flexible and stretchable devices.more » « less
-
Abstract Liquid metal embedded elastomers (LMEEs) are highly stretchable composites comprising microscopic droplets of eutectic gallium‐indium (EGaIn) liquid metal embedded in a soft rubber matrix. They have a unique combination of mechanical, electrical, and thermal properties that make them attractive for potential applications in flexible electronics, thermal management, wearable computing, and soft robotics. However, the use of LMEEs in direct contact with human tissue or organs requires an understanding of their biocompatibility and cell cytotoxicity. In this study, the cytotoxicity of C2C12 cells in contact with LMEE composites composed of EGaIn droplets embedded with a polydimethylsiloxane (PDMS) matrix is investigated. In particular, the influence of EGaIn volume ratio and shear mixing time during synthesis on cell proliferation and viability is examined. The special case of electrically‐conductive LMEE composites in which a percolating network of EGaIn droplets is created through “mechanical sintering” is also examined. This study in C2C12 cytotoxicity represents a first step in determining whether LMEE is safe for use in implantable biomedical devices and biohybrid systems.more » « less
An official website of the United States government

