skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Signal Temporal Logic-Guided Apprenticeship Learning
Apprenticeship learning crucially depends on effectively learning rewards, and hence control policies from user demonstrations. Of particular difficulty is the setting where the desired task consists of a number of sub-goals with temporal dependencies. The quality of inferred rewards and hence policies are typically limited by the quality of demonstrations, and poor inference of these can lead to undesirable outcomes. In this paper, we show how temporal logic specifications that describe high level task objectives, are encoded in a graph to define a temporal-based metric that reasons about behaviors of demonstrators and the learner agent to improve the quality of inferred rewards and policies. Through experiments on a diverse set of robot manipulator simulations, we show how our framework overcomes the drawbacks of prior literature by drastically improving the number of demonstrations required to learn a control policy.  more » « less
Award ID(s):
1932620 1837131
PAR ID:
10564797
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-7770-5
Page Range / eLocation ID:
11147 to 11154
Format(s):
Medium: X
Location:
Abu Dhabi, United Arab Emirates
Sponsoring Org:
National Science Foundation
More Like this
  1. Reward signals in reinforcement learning are expensive to design and often require access to the true state which is not available in the real world. Common alternatives are usually demonstrations or goal images which can be labor-intensive to collect. On the other hand, text descriptions provide a general, natural, and low-effort way of communicating the desired task. However, prior works in learning text-conditioned policies still rely on rewards that are defined using either true state or labeled expert demonstrations. We use recent developments in building large-scale visuolanguage models like CLIP to devise a framework that generates the task reward signal just from goal text description and raw pixel observations which is then used to learn the task policy. We evaluate the proposed framework on control and robotic manipulation tasks. Finally, we distill the individual task policies into a single goal text conditioned policy that can generalize in a zero-shot manner to new tasks with unseen objects and unseen goal text descriptions. 
    more » « less
  2. Learning optimal policies in real-world domains with delayed rewards is a major challenge in Reinforcement Learning. We address the credit assignment problem by proposing a Gaussian Process (GP)-based immediate reward approximation algorithm and evaluate its effectiveness in 4 contexts where rewards can be delayed for long trajectories. In one GridWorld game and 8 Atari games, where immediate rewards are available, our results showed that on 7 out 9 games, the proposed GP inferred reward policy performed at least as well as the immediate reward policy and significantly outperformed the corresponding delayed reward policy. In e-learning and healthcare applications, we combined GP-inferred immediate rewards with offline Deep Q-Network (DQN) policy induction and showed that the GP-inferred reward policies outperformed the policies induced using delayed rewards in both real-world contexts. 
    more » « less
  3. Reinforcement learning (RL) has demonstrated its superiority in solving sequential decision-making problems. However, heavy dependence on immediate reward feedback impedes the wide application of RL. On the other hand, imitation learning (IL) tackles RL without relying on environmental supervision by leveraging external demonstrations. In practice, however, collecting sufficient expert demonstrations can be prohibitively expensive, yet the quality of demonstrations typically limits the performance of the learning policy. To address a practical scenario, in this work, we propose Self-Adaptive Imitation Learning (SAIL), which, provided with a few demonstrations from a sub-optimal teacher, can perform well in RL tasks with extremely delayed rewards, where the only reward feedback is trajectory-wise ranking. SAIL bridges the advantages of IL and RL by interactively exploiting the demonstrations to catch up with the teacher and exploring the environment to yield demonstrations that surpass the teacher. Extensive empirical results show that not only does SAIL significantly improve the sample efficiency, but it also leads to higher asymptotic performance across different continuous control tasks, compared with the state-of-the-art. 
    more » « less
  4. Predictive state representations (PSRs) are models of controlled non-Markov observation sequences which exhibit the same generative process governing POMDP observations without relying on an underlying latent state. In that respect, a PSR is indistinguishable from the corresponding POMDP. However, PSRs notoriously ignore the notion of rewards, which undermines the general utility of PSR models for control, planning, or reinforcement learning. Therefore, we describe a sufficient and necessary accuracy condition which determines whether a PSR is able to accurately model POMDP rewards, we show that rewards can be approximated even when the accuracy condition is not satisfied, and we find that a non-trivial number of POMDPs taken from a well-known thirdparty repository do not satisfy the accuracy condition. We propose reward-predictive state representations (R-PSRs), a generalization of PSRs which accurately models both observations and rewards, and develop value iteration for R-PSRs. We show that there is a mismatch between optimal POMDP policies and the optimal PSR policies derived from approximate rewards. On the other hand, optimal R-PSR policies perfectly match optimal POMDP policies, reconfirming R-PSRs as accurate stateless generative models of observations and rewards. 
    more » « less
  5. null (Ed.)
    With growing access to versatile robotics, it is beneficial for end users to be able to teach robots tasks without needing to code a control policy. One possibility is to teach the robot through successful task executions. However, near-optimal demonstrations of a task can be difficult to provide and even successful demonstrations can fail to capture task aspects key to robust skill replication. Here, we propose a learning from demonstration (LfD) approach that enables learning of robust task definitions without the need for near-optimal demonstrations. We present a novel algorithmic framework for learning task specifications based on the ergodic metric—a measure of information content in motion. Moreover, we make use of negative demonstrations— demonstrations of what not to do—and show that they can help compensate for imperfect demonstrations, reduce the number of demonstrations needed, and highlight crucial task elements improving robot performance. In a proof-of-concept example of cart-pole inversion, we show that negative demonstrations alone can be sufficient to successfully learn and recreate a skill. Through a human subject study with 24 participants, we show that consistently more information about a task can be captured from combined positive and negative (posneg) demonstrations than from the same amount of just positive demonstrations. Finally, we demonstrate our learning approach on simulated tasks of target reaching and table cleaning with a 7-DoF Franka arm. Our results point towards a future with robust, data efficient LfD for novice users. 
    more » « less