Learning high-level representations for graphs is crucial for tasks like node classification, where graph pooling aggregates node features to provide a holistic view that enhances predictive performance. Despite numerous methods that have been proposed in this promising and rapidly developing research field, most efforts to generalize the pooling operation to graphs are primarily performance-driven, with fairness issues largely overlooked: i) the process of graph pooling could exacerbate disparities in distribution among various subgroups; ii) the resultant graph structure augmentation may inadvertently strengthen intra-group connectivity, leading to unintended inter-group isolation. To this end, this paper extends the initial effort on fair graph pooling to the development of fair graph neural networks, while also providing a unified framework to collectively address group and individual graph fairness. Our experimental evaluations on multiple datasets demonstrate that the proposed method not only outperforms state-of-the-art baselines in terms of fairness but also achieves comparable predictive performance. 
                        more » 
                        « less   
                    
                            
                            Individual Fairness in Graphs Using Local and Global Structural Information
                        
                    
    
            Graph neural networks are powerful graph representation learners in which node representations are highly influenced by features of neighboring nodes. Prior work on individual fairness in graphs has focused only on node features rather than structural issues. However, from the perspective of fairness in high-stakes applications, structural fairness is also important, and the learned representations may be systematically and undesirably biased against unprivileged individuals due to a lack of structural awareness in the learning process. In this work, we propose a pre-processing bias mitigation approach for individual fairness that gives importance to local and global structural features. We mitigate the local structure discrepancy of the graph embedding via a locally fair PageRank method. We address the global structure disproportion between pairs of nodes by introducing truncated singular value decomposition-based pairwise node similarities. Empirically, the proposed pre-processed fair structural features have superior performance in individual fairness metrics compared to the state-of-the-art methods while maintaining prediction performance. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10566077
- Publisher / Repository:
- The AAAI Press
- Date Published:
- Journal Name:
- Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society
- Volume:
- 7
- ISSN:
- 3065-8365
- Page Range / eLocation ID:
- 1379 to 1389
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This work considers the task of representation learning on the attributed relational graph (ARG). Both the nodes and edges in an ARG are associated with attributes/features allowing ARGs to encode rich structural information widely observed in real applications. Existing graph neural networks offer limited ability to capture complex interactions within local structural contexts, which hinders them from taking advantage of the expression power of ARGs. We propose motif convolution module (MCM), a new motif-based graph representation learning technique to better utilize local structural information. The ability to handle continuous edge and node features is one of MCM’s advantages over existing motif-based models. MCM builds a motif vocabulary in an unsupervised way and deploys a novel motif convolution operation to extract the local structural context of individual nodes, which is then used to learn higher level node representations via multilayer perceptron and/or message passing in graph neural networks. When compared with other graph learning approaches to classifying synthetic graphs, our approach is substantially better at capturing structural context. We also demonstrate the performance and explainability advantages of our approach by applying it to several molecular benchmarks.more » « less
- 
            In social network, a person located at the periphery region (marginal node) is likely to be treated unfairly when compared with the persons at the center. While existing fairness works on graphs mainly focus on protecting sensitive attributes (e.g., age and gender), the fairness incurred by the graph structure should also be given attention. On the other hand, the information aggregation mechanism of graph neural networks amplifies such structure unfairness, as marginal nodes are often far away from other nodes. In this paper, we focus on novel fairness incurred by the graph structure on graph neural networks, named structure fairness. Specifically, we first analyzed multiple graphs and observed that marginal nodes in graphs have a worse performance of downstream tasks than others in graph neural networks. Motivated by the observation, we propose Structural Fair Graph Neural Network (SFairGNN), which combines neighborhood expansion based structure debiasing with hop-aware attentive information aggregation to achieve structure fairness. Our experiments show SFairGNN can significantly improve structure fairness while maintaining overall performance in the downstream tasks.more » « less
- 
            Fair machine learning aims to mitigate the biases of model predictions against certain subpopulations regarding sensitive attributes such as race and gender. Among the many existing fairness notions, counterfactual fairness measures the model fairness from a causal perspective by comparing the predictions of each individual from the original data and the counterfactuals. In counterfactuals, the sensitive attribute values of this individual had been modified. Recently, a few works extend counterfactual fairness to graph data, but most of them neglect the following facts that can lead to biases: 1) the sensitive attributes of each node's neighbors may causally affect the prediction w.r.t. this node; 2) the sensitive attributes may causally affect other features and the graph structure. To tackle these issues, in this paper, we propose a novel fairness notion - graph counterfactual fairness, which considers the biases led by the above facts. To learn node representations towards graph counterfactual fairness, we propose a novel framework based on counterfactual data augmentation. In this framework, we generate counterfactuals corresponding to perturbations on each node's and their neighbors' sensitive attributes. Then we enforce fairness by minimizing the discrepancy between the representations learned from the original graph and the counterfactuals for each node. Experiments on both synthetic and real-world graphs show that our framework outperforms the state-of-the-art baselines in graph counterfactual fairness, and also achieves comparable prediction performance.more » « less
- 
            There has been significant progress in improving the performance of graph neural networks (GNNs) through enhancements in graph data, model architecture design, and training strategies. For fairness in graphs, recent studies achieve fair representations and predictions through either graph data pre-processing (e.g., node feature masking, and topology rewiring) or fair training strategies (e.g., regularization, adversarial debiasing, and fair contrastive learning). How to achieve fairness in graphs from the model architecture perspective is less explored. More importantly, GNNs exhibit worse fairness performance compared to multilayer perception since their model architecture (i.e., neighbor aggregation) amplifies biases. To this end, we aim to achieve fairness via a new GNN architecture. We propose Fair Message Passing (FMP) designed within a unified optimization framework for GNNs. Notably, FMP explicitly renders sensitive attribute usage in forward propagation for node classification task using cross-entropy loss without data pre-processing. In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.In this way, FMP scheme can aggregate useful information from neighbors and mitigate bias to achieve better fairness and prediction tradeoff performance. Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets. The code is available at https://github.com/zhimengj0326/FMP.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    