Solvents are the major source of chemical waste from synthetic chemistry labs. Growing attention to more environmentally friendly sustainable processes demands novel technologies to substitute toxic or hazardous solvents. If not always, sometimes, water can be a suitable substitute for organic solvents, if used appropriately. However, the sole use of water as a solvent remains non-practical due to its incompatibility with organic reagents. Nonetheless, over the past few years, new additives have been disclosed to achieve chemistry in water that also include aqueous micelles as nanoreactors. Although one cannot claim micellar catalysis to be a greener technology for every single transformation, it remains the sustainable or greener alternative for many reactions. Literature precedents support that micellar technology has much more potential than just as a reaction medium, i.e. , the role of the amphiphile as a ligand obviating phosphine ligands in catalysis, the shielding effect of micelles to protect water-sensitive reaction intermediates in catalysis, and the compartmentalization effect. While compiling the powerful impact of micellar catalysis, this article highlights two diverse recent technologies: (i) the design and employment of the surfactant PS-750-M in selective catalysis; (ii) the use of the semisynthetic HPMC polymer to enable ultrafast reactions in water.
more »
« less
This content will become publicly available on January 4, 2026
Electrocatalytic Micelle‐Driven Hydrodefluorination for Accessing Unprotected Monofluorinated Indoles
Abstract Toxic organic solvents and electrolytes, traditionally indispensable for electro‐organic synthesis, are now being reconsidered. In developing more sustainable electro‐organic synthesis, we've harnessed the aqueous micelles as solvents and electrolyte‐like structures when deformed under an electric field. The technology is showcased in synthetically highly valued hydrodefluorination reactions of difluorinated indoles. This mild electrosynthetic method produces monofluorinated unprotected indole scaffolds. Our approach minimizes waste and enhances atom economy, reducing reliance on expensive and hazardous solvents and electrolytes. The surfactant's potential for recycling was verified for two cycles. Cyclic voltammetry analysis has corroborated that PS‐750‐M micelles in water establish a more efficient platform for hydrodefluorination. Our technology simplifies the production of monofluorinated indoles, which are crucial for many drug‐like molecules.
more »
« less
- Award ID(s):
- 2345856
- PAR ID:
- 10566663
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 64
- Issue:
- 10
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium metal batteries (LMBs), especially “anode-free“ LMBs, promise much higher energy density than current lithium-ion batteries but suffer from poor capacity retention. While novel electrolytes have been designed to extend cycle life in anode free LMBs, most of them contain a high fraction of fluorinated solvents or diluents that may cause environmental concerns. Herein, we report the design and synthesis of a group of nonfluorinated ether solvents (termed xME solvents). By substituting the methyl terminal group of 1,2-dimethoxy ethane (DME) with different alkyl groups, the solvation power of xME solvents was tuned to be weaker, leading to more ion pairing in electrolyte solvation structure. In anode free type Cu/LiFePO4(Cu/LFP) cells, xME electrolytes in general show better capacity retention than DME-based electrolyte. Some xME electrolytes also show better oxidative stability than DME against aluminum and LiNi0.8Mn0.1Co0.1O2(NMC811) electrodes. While the general improvement in LMB cycle life and oxidative stability can be attributed to more ion pairing, the local variation within xME electrolytes indicates other factors are also important. Our work proposes a molecular design strategy to fine-tune ion solvation structure of nonfluorinated ether electrolytes for LMBs.more » « less
-
Abstract The coordinated, cooperative use of microwave heating with conventional heating can provide advantages in chemical synthesis. Here, heterogeneous mixtures comprising ionic, highly microwave‐absorbing organic reagents and nearly microwave‐transparent arene solvents are heated conventionally and/or with microwaves, resulting in faster and, in some cases, higher yielding reactions when the two heating methods are applied cooperatively as compared to either method independently. Control experiments in more polar arene solvents show no advantage of cooperative heating, consistent with selective microwave heating phenomena. The experiments are facilitated by reactor technology that regulates internal reaction temperature and coordinates the application of conventional and microwave heating. The positive outcomes in this initial exploratory system suggest that cooperative heating can offer benefits in other systems designed for selective microwave heating.more » « less
-
Reducing the use of solvents is an important aim of green chemistry. Using micelles self-assembled from amphiphilic molecules dispersed in water (considered a green solvent) has facilitated reactions of organic compounds. When performing reactions in micelles, the hydrophobic effect can considerably accelerate apparent reaction rates, as well as enhance selectivity. Here, we review micellar reaction media and their potential role in sustainable chemical production. The focus of this review is applications of engineered amphiphilic systems for reactions (surface-active ionic liquids, designer surfactants, and block copolymers) as reaction media. Micelles are a versatile platform for performing a large array of organic chemistries using water as the bulk solvent. Building on this foundation, synthetic sequences combining several reaction steps in one pot have been developed. Telescoping multiple reactions can reduce solvent waste by limiting the volume of solvents, as well as eliminating purification processes. Thus, in particular, we review recent advances in “one-pot” multistep reactions achieved using micellar reaction media with potential applications in medicinal chemistry and agrochemistry. Photocatalyzed reactions in micellar reaction media are also discussed. In addition to the use of micelles, we emphasize the process (steps to isolate the product and reuse the catalyst).more » « less
-
Abstract A Diels–Alder reaction‐based strategy for the synthesis of indoles and related heterocycles is reported. An intramolecular cycloaddition of alkyne‐tethered 3‐aminopyrones gives 4‐substituted indolines in good yield and with complete regioselectivity. Additional substitution is readily tolerated in the transformation, allowing synthesis of complex and non‐canonical substitution patterns. Oxidative conditions give the corresponding indoles. The strategy also allows the synthesis of carbazoles. The method was showcased in a formal synthesis of lysergic acid.more » « less
An official website of the United States government
