skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Platinum‐Catalyzed Regio‐ and Enantioselective Diboration of Unactivated Alkenes with (pin)B−B(dan)
Abstract Asymmetric diboration of terminal alkenes is well established, and subsequent selective functionalization of the less hindered primary boronic ester is commonly achieved. Conversely, selective functionalization of the sterically less accessible secondary boronic ester remains challenging. An alternative way to control chemoselective functionalization of bis(boron) compounds is by engendering different Lewis acidity to the two boryl moieties, since reactivity would then be dictated by Lewis acidity instead of sterics. We report herein the regio‐ and enantioselective Pt‐catalyzed diboration of unactivated alkenes with (pin)B−B(dan). A broad range of terminal and cyclic alkenes undergo diboration to furnish the differentiable 1,2‐bis(boron) compounds with high levels of regio‐ and enantiocontrol, giving access to a wide variety of novel building blocks from a common intermediate. The reaction places the less Lewis acidic B(dan) group at the less hindered position and the resulting 1,2‐bisboryl alkanes undergo selective transformations of the B(pin) group located at the more hindered position. The regioselectivity of the diboration has been studied by DFT calculations and is believed to originate from thetransinfluence, which lowers the activation barrier for formation of the regioisomer that places the weaker electron donor [B(pin) vs B(dan)] opposite the strong electron donor (alkyl group) in the platinum complex.  more » « less
Award ID(s):
2400056
PAR ID:
10566667
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
1
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This Account describes work by our research group that highlights opportunities to utilize organoboron molecules to direct chemical reactivity in the organic solid state. Specifically, we convey a previously unexplored use of hydrogen bonding of boronic acids and boron coordination in boronic esters to achieve [2+2]-photocycloadditions in crystalline solids. Organoboron molecules act as templates or ‘shepherds’ to organize alkenes in a suitable geometry to undergo regio- and stereoselective [2+2]-photocycloadditions in quantitative yields. We also provide a selection of publications that served as an inspiration for our strategies and offer challenges and opportunities for future developments of boron in the field of materials and solid-state chemistry. 1 Introduction 1.1 Template Strategy for [2+2]-Photocycloadditions in the Solid State 2 Boronic Acids as Templates for [2+2]-Photocycloadditions in the Solid State 2.1 Supramolecular Catalysis of [2+2]-Photocycloadditions in the Solid State Using Boronic Acids 3 Boronic Esters as Templates for [2+2]-Photocycloadditions in the Solid State 3.1 Application of Photoproducts: Separation of Thiophene from Benzene through Crystallization 3.2 Crystal Reactivity of B←N-Bonded Adducts: The Case of Styryl­thiophenes 4 Conclusions and Perspectives 
    more » « less
  2. The dearomative functionalization of indoles to C2-borylated indolenium compounds is achieved under mild conditions by leveraging the high Lewis acidity of bis(1-methyl-ortho-carobranyl)borane. 
    more » « less
  3. Abstract Multifunctional organoboron compounds increasingly enable the simple generation of complex, Csp3‐rich small molecules. The ability of boron‐containing functional groups to modify the reactivity of α‐radicals has also enabled a myriad of chemical reactions. Boronic esters with vacant p‐orbitals have a significant stabilizing effect on α‐radicals due to delocalization of spin density into the empty orbital. The effect of coordinatively saturated derivatives, such as N‐methyliminodiacetic acid (MIDA) boronates and counterparts, remains less clear. Herein, we demonstrate that coordinatively saturated MIDA and TIDA boronates stabilize secondary alkyl α‐radicals via σB‐Nhyperconjugation in a manner that allows site‐selective C−H bromination. DFT calculated radical stabilization energies and spin density maps as well as LED NMR kinetic analysis of photochemical bromination rates of different boronic esters further these findings. This work clarifies that the α‐radical stabilizing effect of boronic esters does not only proceed via delocalization of radical character into vacant boron p‐orbitals, but that hyperconjugation of tetrahedral boron‐containing functional groups and their ligand electron delocalizing ability also play a critical role. These findings establish boron ligands as a useful dial for tuning reactivity at the α‐carbon. 
    more » « less
  4. A unique class of β-boron-functionalized non-steroidal anti-inflammatory compound (pinB-NSAID) was previously synthesized via copper-catalyzed 1,2-difunctionalization of the respective vinyl arene with CO2 and B2pin2 reagents. Here, pinacolylboron-functionalized ibuprofen (pinB-ibuprofen) was used as a model substrate to develop the conditions for pinacol deprotection and subsequent boron functionalization. Initial pinacol-boronic ester deprotection was achieved by transesterification with diethanolamine (DEA) from the boralactonate organic salt. The resulting DEA boronate adopts a spirocyclic boralactonate structure rather than a diazaborocane–DABO boronate structure. The subsequent acid-mediated hydrolysis of DEA and transesterification/transamination provided a diverse scope of new boron-containing ibuprofen derivatives. 
    more » « less
  5. Abstract With the view of developing selective transmembrane anion transporters, a series of phosphonium boranes of general formula [p‐RPh2P(C6H4)BMes2]+have been synthesized and evaluated. The results demonstrate that variation of the R group appended to the phosphorus atom informs the lipophilicity of these compounds, their Lewis acidity, as well as their transport activity. Anion transport experiments in POPC‐based large unilamellar vesicles show that these main‐group cations are highly selective for the fluoride anion, which is transported more than 20 times faster than the chloride anion. Finally, this work shows that the anion transport properties of these compounds are extremely sensitive to the steric crowding about the boron atom, pointing to the crucial involvement of the Group 13 element as the anion binding site. 
    more » « less