Stein variational gradient descent (SVGD) is a particle-based inference algorithm that leverages gradient information for efficient approximate inference. In this work, we enhance SVGD by leveraging preconditioning matrices, such as the Hessian and Fisher information matrix, to incorporate geometric information into SVGD updates. We achieve this by presenting a generalization of SVGD that replaces the scalar-valued kernels in vanilla SVGD with more general matrix-valued kernels. This yields a significant extension of SVGD, and more importantly, allows us to flexibly incorporate various preconditioning matrices to accelerate the exploration in the probability landscape. Empirical results show that our method outperforms vanilla SVGD and a variety of baseline approaches over a range of real-world Bayesian inference tasks.
more »
« less
NysAct: A Scalable Preconditioned Gradient Descent using Nyström Approximation
Adaptive gradient methods are computationally efficient and converge quickly, but they often suffer from poor generalization. In contrast, second-order methods enhance convergence and generalization but typically incur high computational and memory costs. In this work, we introduce NYSACT, a scalable first-order gradient preconditioning method that strikes a balance between state-of-the-art first-order and second-order optimization methods. NYSACT leverages an eigenvalue-shifted Nyström method to approximate the activation covariance matrix, which is used as a preconditioning matrix, significantly reducing time and memory complexities with minimal impact on test accuracy. Our experiments show that NYSACT not only achieves improved test accuracy compared to both first-order and second-order methods but also demands considerably less computational resources than existing second-order methods.
more »
« less
- Award ID(s):
- 1943046
- PAR ID:
- 10567278
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-6248-0
- Page Range / eLocation ID:
- 1442 to 1449
- Subject(s) / Keyword(s):
- second-order optimization deep learning preconditioned sgd
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Krylov Cubic Regularized Newton: A Subspace Second-Order Method with Dimension-Free Convergence RateSecond-order optimization methods, such as cubic regularized Newton methods, are known for their rapid convergence rates; nevertheless, they become impractical in high-dimensional problems due to their substantial memory requirements and computational costs. One promising approach is to execute second order updates within a lower-dimensional subspace, giving rise to \textit{subspace second-order} methods. However, the majority of existing subspace second-order methods randomly select subspaces, consequently resulting in slower convergence rates depending on the problem's dimension $$d$$. In this paper, we introduce a novel subspace cubic regularized Newton method that achieves a dimension-independent global convergence rate of $$\bigO\left(\frac{1}{mk}+\frac{1}{k^2}\right)$$ for solving convex optimization problems. Here, $$m$$ represents the subspace dimension, which can be significantly smaller than $$d$$. Instead of adopting a random subspace, our primary innovation involves performing the cubic regularized Newton update within the \emph{Krylov subspace} associated with the Hessian and the gradient of the objective function. This result marks the first instance of a dimension-independent convergence rate for a subspace second-order method. Furthermore, when specific spectral conditions of the Hessian are met, our method recovers the convergence rate of a full-dimensional cubic regularized Newton method. Numerical experiments show our method converges faster than existing random subspace methods, especially for high-dimensional problems.more » « less
-
We propose the Epsilon Difference Gradient Evolution (EDGE) method for accurate flow-map calculation on grids via Hermite interpolation without using velocity buffers. Our key idea is to integrate Gradient Evolution for accurate first-order derivatives and a tetrahedron-based Epsilon Difference scheme to compute higher-order derivatives with reduced memory consumption. EDGE achievesO(1) memory usage, independent of flow map length, while maintaining vorticity preservation comparable to buffer-based methods. We validate our methods across diverse vortical flow scenarios, demonstrating up to 90% backward map memory reduction and significant computational efficiency, broadening the applicability of flow-map methods to large-scale and complex fluid simulations.more » « less
-
Modern deep neural networks (DNNs) often require high memory consumption and large computational loads. In order to deploy DNN algorithms efficiently on edge or mobile devices, a series of DNN compression algorithms have been explored, including factorization methods. Factorization methods approximate the weight matrix of a DNN layer with the multiplication of two or multiple low-rank matrices. However, it is hard to measure the ranks of DNN layers during the training process. Previous works mainly induce low-rank through implicit approximations or via costly singular value decomposition (SVD) process on every training step. The former approach usually induces a high accuracy loss while the latter has a low efficiency. In this work, we propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step. SVD training first decomposes each layer into the form of its full-rank SVD, then performs training directly on the decomposed weights. We add orthogonality regularization to the singular vectors, which ensure the valid form of SVD and avoid gradient vanishing/exploding. Low-rank is encouraged by applying sparsity-inducing regularizers on the singular values of each layer. Singular value pruning is applied at the end to explicitly reach a low-rank model. We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy, comparing to not only previous factorization methods but also state-of-the-art filter pruning methods.more » « less
-
We consider feature selection for applications in machine learning where the dimensionality of the data is so large that it exceeds the working memory of the (local) computing machine. Unfortunately, current large-scale sketching algorithms show poor memory-accuracy trade-off in selecting features in high dimensions due to the irreversible collision and accumulation of the stochastic gradient noise in the sketched domain. Here, we develop a second-order feature selection algorithm, called BEAR, which avoids the extra collisions by efficiently storing the second-order stochastic gradients of the celebrated Broyden-Fletcher-Goldfarb-Shannon (BFGS) algorithm in Count Sketch, using a memory cost that grows sublinearly with the size of the feature vector. BEAR reveals an unexplored advantage of second-order optimization for memory-constrained high-dimensional gradient sketching. Our extensive experiments on several real-world data sets from genomics to language processing demonstrate that BEAR requires up to three orders of magnitude less memory space to achieve the same classification accuracy compared to the first-order sketching algorithms with a comparable run time. Our theoretical analysis further proves the global convergence of BEAR with O(1/𝑡) rate in 𝑡 iterations of the sketched algorithm.more » « less
An official website of the United States government

