skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Superconductivity in the Parent Infinite-Layer Nickelate NdNiO2
We report evidence for superconductivity with onset temperatures up to 11 K in thin films of the infinite-layer nickelate parent compound NdNiO 2 . A combination of oxide molecular beam epitaxy and atomic hydrogen reduction yields samples with high crystallinity and low residual resistivities, a substantial fraction of which exhibit superconducting transitions. We survey a large series of samples with a variety of techniques, including electrical transport, scanning transmission electron microscopy, x-ray absorption spectroscopy, and resonant inelastic x-ray scattering, to investigate the possible origins of superconductivity. We propose that superconductivity could be intrinsic to the undoped infinite-layer nickelates but suppressed by disorder due to a possibly sign-changing order parameter, a finding which would necessitate a reconsideration of the nickelate phase diagram. Another possible hypothesis is that the parent materials can be hole doped from randomly dispersed apical oxygen atoms, which would suggest an alternative pathway for achieving superconductivity. Published by the American Physical Society2025  more » « less
Award ID(s):
2039380
PAR ID:
10597697
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review X
Volume:
15
Issue:
2
ISSN:
2160-3308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We examine the bulk electronic structure of Nd 3 Ni 2 O 7 using Ni 2 p core-level hard x-ray photoemission spectroscopy combined with density functional theory + dynamical mean-field theory. Our results reveal a large deviation of the Ni 3 d occupation from the formal Ni 2.5 + valency, highlighting the importance of the charge transfer from oxygen ligands. We find that the dominant d 8 configuration is accompanied by nearly equal contributions from d 7 and d 9 states, exhibiting an unusual valence state among Ni-based oxides. Finally, we discuss the Ni d x 2 y 2 and d z 2 orbital-dependent hybridization, correlation and local spin dynamics. Published by the American Physical Society2025 
    more » « less
  2. In bulk Sr 2 RuO 4 , the strong sensitivity of the superconducting transition temperature T c to nonmagnetic impurities provides robust evidence for a superconducting order parameter that changes sign around the Fermi surface. In superconducting epitaxial thin-film Sr 2 RuO 4 , the relationship between T c and the residual resistivity ρ 0 , which in bulk samples is taken to be a proxy for the low-temperature elastic scattering rate, is far less clear. Using high-energy electron irradiation to controllably introduce point disorder into bulk single-crystal and thin-film Sr 2 RuO 4 , we show that T c is suppressed in both systems at nearly identical rates. This suggests that part of ρ 0 in films comes from defects that do not contribute to superconducting pairbreaking and establishes a quantitative link between the superconductivity of bulk and thin-film samples. Published by the American Physical Society2024 
    more » « less
  3. FeTe 0.55 Se 0.45 (FTS) occupies a special spot in modern condensed matter physics at the intersections of electron correlation, topology, and unconventional superconductivity. The bulk electronic structure of FTS is predicted to be topologically nontrivial due to the band inversion between the d x z and p z bands along Γ Z . However, there remain debates in both the authenticity of the Dirac surface states (DSSs) and the experimental deviations of band structure from the theoretical band inversion picture. Here we resolve these debates through a comprehensive angle-resolved photoemission spectroscopy investigation. We first observe a persistent DSS independent of k z . Then, by comparing FTS with FeSe, which has no band inversion along Γ Z , we identify the spectral weight fingerprint of both the presence of the p z band and the inversion between the d x z and p z bands. Furthermore, we propose a renormalization scheme for the band structure under the framework of a tight-binding model preserving crystal symmetry. Our results highlight the significant influence of correlation on modifying the band structure and make a strong case for the existence of topological band structure in this unconventional superconductor. Published by the American Physical Society2024 
    more » « less
  4. Ever since the discovery of the charge density wave (CDW) transition in the kagome metal CsV 3 Sb 5 , the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature ( T CDW ), an additional electronic nematic instability well below T CDW has been reported based on the diverging elastoresistivity coefficient in the anisotropic channel ( m E 2 g ). Verifying the existence of a nematic transition below T CDW is not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements of CsV 3 Sb 5 using three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficient m E 2 g is temperature independent, except for a step jump at T CDW . The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficient m A 1 g increases below T CDW , reaching a peak value of 90 at T * = 20 K . Our results strongly indicate that the phase transition at T * is not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from the A 1 g channel. Published by the American Physical Society2024 
    more » « less
  5. The existence of a quantum critical point (QCP) and fluctuations around it are believed to be important for understanding the phase diagram in unconventional superconductors such as cuprates, iron pnictides, and heavy fermion superconductors. However, the QCP is usually buried deep within the superconducting dome and is difficult to investigate. The connection between quantum critical fluctuations and superconductivity remains an outstanding problem in condensed matter. Here combining both electrical transport and Nernst experiments, we explicitly demonstrate the onset of superconductivity at an unconventional QCP in gate-tuned monolayer tungsten ditelluride ( WTe 2 ) , with features incompatible with the conventional Bardeen-Cooper-Schrieffer scenario. The results lead to a superconducting phase diagram that is distinguished from other known superconductors. Two distinct gate-tuned quantum phase transitions are observed at the ends of the superconducting dome. We find that quantum fluctuations around the QCP of the underdoped regime are essential for understanding how the monolayer superconductivity is established. The unconventional phase diagram we report here illustrates a previously unknown relation between superconductivity and QCP. Published by the American Physical Society2025 
    more » « less