A coupling between Earth's rotation and orbital angular momentum (OAM), known as the Sagnac effect, is observed in entangled neutrons produced using a spin-echo interferometer. After correction for instrument systematics the measured coupling is within 5% of theory, with an uncertainty of 7.2%. The OAM in our setup is transverse to the propagation direction and scales linearly with neutron wavelength (4–12.75 Å), so the Sagnac coupling can be varied without mechanically rotating the device, which avoids systematic errors present in previous experiments. The detected transverse OAM of our beam corresponds to times lower than in the previous neutron experiments. This demonstrates the feasibility of using the Sagnac effect to definitively measure neutron OAM and paves the way towards a future observation of the quantum Sagnac effect. Published by the American Physical Society2025
more »
« less
Spherically symmetric Earth models yield no net electron spin
Terrestrial experiments that use electrons in Earth as a spin-polarized source have been demonstrated to provide strong bounds on exotic long-range spin-spin and spin-velocity interactions. These bounds constrain the coupling strength of many proposed ultralight bosonic dark-matter candidates. Recently, it was pointed out that a monopole-dipole coupling between the Sun and the spin-polarized electrons of Earth would result in a modification of the precession of the perihelion of Earth. Using an estimate for the net spin polarization of Earth and experimental bounds on Earth’s perihelion precession, interesting constraints were placed on the magnitude of this monopole-dipole coupling. Here we investigate the spin associated with Earth’s electrons. We find that there are about spin-polarized electrons in the mantle and crust of Earth oriented antiparallel to their local magnetic field. However, when integrated over any spherically symmetric Earth model, we find that the vector sum of these spins is zero. In order to establish a lower bound on the magnitude of the net spin along Earth’s rotation axis we have investigated three of the largest breakdowns of Earth’s spherical symmetry: the large low shear-velocity provinces of the mantle, the crustal composition, and the oblate spheroid of Earth. From these investigations we conclude that there are at least spin-polarized electrons aligned antiparallel to Earth’s rotation axis. This analysis suggests that the bounds on the monopole-dipole coupling that were extracted from Earth’s perihelion precession need to be relaxed by a factor of about 2000. Published by the American Physical Society2025
more »
« less
- PAR ID:
- 10568316
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 111
- Issue:
- 1
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Light, weakly coupled bosonic particles such as axions can mediate long range monopole-dipole interactions between matter and spins. We propose a new experimental method to detect such a force exerted by the spin of electrons on a freely falling atom using atom interferometry. The intrinsic advantages of atom interferometry, such as the freely falling nature of the atom and the well-defined response of the atom to external magnetic fields, should enable the proposed method to overcome systematic effects induced by vibrations, magnetic fields, and gravity. This approach is most suited to probe forces with a range . With current technology, our proposed setup could potentially extend probes of such forces by an order of magnitude beyond present laboratory limits. Published by the American Physical Society2025more » « less
-
Massive scalar fields are promising candidates for addressing many unresolved problems in fundamental physics. We report the first model-agnostic Bayesian search of massive scalar fields that are nonminimally coupled to gravity in LIGO/Virgo/KAGRA gravitational-wave data. We find no evidence for such fields and place the most stringent upper limits on their coupling for scalar masses . We exemplify the strength of these bounds by applying them to massive scalar-Gauss-Bonnet gravity, finding the tightest constraints on the coupling constant to date, for scalar masses to 90% credible level. Published by the American Physical Society2025more » « less
-
Distinct from familiar -, -, or -wave pairings, the monopole superconducting order represents a novel class of pairing order arising from nontrivial monopole charge of the Cooper pair. In the weak-coupling regime, this order can emerge when pairing occurs between Fermi surfaces with different Chern numbers in, for example, doped Weyl semimetal systems. However, the phase of monopole pairing order is not well-defined over an entire Fermi surface, making it challenging to design experiments sensitive to both its symmetry and topology. To address this, we propose a scheme based on symmetry and topological principles to identify this elusive pairing order through a set of phase-sensitive Josephson experiments. By examining the discrepancy between global and local angular momentum of the pairing order, we can unveil the monopole charge of the pairing order, including for models with higher pair monopole charge , and 3. We demonstrate the proposed probe of monopole pairing order through analytic and numerical studies of Josephson coupling in models of monopole superconductor junctions. This work opens a promising avenue to uncover the unique topological properties of monopole pairing orders and to distinguish them from known pairing orders based on spherical harmonic symmetry. Published by the American Physical Society2024more » « less
-
We present details on a new measurement of the muon magnetic anomaly, . The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses polarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value of is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure (0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is (0.19 ppm). Published by the American Physical Society2024more » « less
An official website of the United States government

