We report the realization of efficiently coupled 3D tapered waveguide-to-fiber couplers (TWCs) based on standard lithography techniques. The 3D TWC design is capable of achieving highly efficient flat-cleaved fiber to silicon nitride photonic waveguide coupling, withT ≈ 95 % polarization-insensitive coupling efficiency, wide bandwidth, and good misalignment tolerance. Our fabricated 3D TWCs on a functional nanophotonic circuit achieveT ≈ 85% coupling efficiency. Beyond applications in high-efficiency photon coupling, the demonstrated 3D lithography technique provides a complementary approach for mode field shaping and effective refractive index engineering, potentially useful for general applications in integrated photonic circuits.
more »
« less
Atomic fluorescence collection into planar photonic devices
Fluorescence collection from individual emitters plays a key role in state detection and remote entanglement generation, fundamental functionalities in many quantum platforms. Planar photonics have been demonstrated for robust and scalable addressing of trapped-ion systems, motivating consideration of similar elements for the complementary challenge of photon collection. Here, using an argument from the reciprocity principle, we show that far-field photon collection efficiency can be simply expressed in terms of the fields associated with the collection optic at the emitter position alone. We calculate collection efficiencies into ideal paraxial and fully vectorial focused Gaussian modes parameterized in terms of focal waist, and further quantify the modest enhancements possible with more general beam profiles, establishing design requirements for efficient collection. Toward practical implementation, we design, fabricate, and characterize two diffractive collection elements operating atλ = 397 nm; a forward emitting design is predicted to offer 0.25% collection efficiency into a single waveguide mode, while a more efficient reverse-emitting design offers 1.14% collection efficiency, albeit with more demanding fabrication requirements. Close agreement between simulated and measured emission for both designs indicates practicality of these collection efficiencies, and we indicate avenues to improved devices approaching the limits predicted for ideal beams. We point out a particularly simple integrated waveguide configuration for polarization-based remote entanglement generation enabled by integrated collection.
more »
« less
- Award ID(s):
- 2301389
- PAR ID:
- 10568387
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optica Quantum
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2837-6714
- Format(s):
- Medium: X Size: Article No. 28
- Size(s):
- Article No. 28
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We investigate the feasibility and performance of photon-number-resolved photodetection employing single-photon avalanche photodiodes (SPADs) with low dark counts. While the main idea, to splitnphotons intomdetection modes with a vanishing probability of more than one photon per mode, is not new, we investigate here a important variant of this situation where SPADs are side-coupled to the same waveguide rather than terminally coupled to a propagation tree. This prevents the nonideal SPAD quantum efficiency from contributing to photon loss. We propose a concrete SPAD segmented waveguide detector based on a vertical directional coupler design, and characterize its performance by evaluating the purities of Positive-Operator-Valued Measures (POVMs) in terms of number of SPADs, photon loss, dark counts, and electrical cross-talk.more » « less
-
Trapped atomic ions are natural candidates for quantum information processing and have the potential to realize or improve quantum computing, sensing, and networking. These applications often require the collection of individual photons emitted from ions into guided optical modes, in some cases for the production of entanglement between separated ions. Proof-of-principle demonstrations of such photon collection from trapped ions have been performed using high-numerical-aperture lenses or cavities and single-mode fibers, but integrated photonic elements in ion-trap structures offer advantages in scalability and manufacturability over traditional optics. In this paper we analyze structures monolithically fabricated with an ion trap for collecting ion-emitted photons, coupling them into waveguides, and manipulating them via interference. We calculate geometric limitations on collection efficiency for this scheme, simulate a single-layer grating that shows performance comparable to demonstrated free-space optics, and discuss practical fabrication and fidelity considerations. Based on this analysis, we conclude that integrated photonics can support scalable systems of trapped ions that can distribute quantum information via photon-mediated entanglement.more » « less
-
Solid-state defect qubit systems with spin-photon interfaces show great promise for quantum information and metrology applications. Photon collection efficiency, however, presents a major challenge for defect qubits in high refractive index host materials. Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface including spectral response, photon polarization, and collection mode. Further, the design process can incorporate additional constraints, such as fabrication tolerance and material processing limitations. Here, we design and demonstrate a compact hybrid gallium phosphide on diamond inverse-design planar dielectric structure coupled to single near-surface nitrogen-vacancy centers formed by implantation and annealing. We observe up to a 14-fold broadband enhancement in photon extraction efficiency, in close agreement with simulations. We expect that such inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, efficient sensing, and heralded entanglement schemes.more » « less
-
Abstract Nonlinear optics plays an important role in many areas of science and technology. The advance of nonlinear optics is empowered by the discovery and utilization of materials with growing optical nonlinearity. Here we demonstrate an indium gallium phosphide (InGaP) integrated photonics platform for broadband, ultra-efficient second-order nonlinear optics. The InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of 128, 000%/W/cm2at 1.55μm pump wavelength, nearly two orders of magnitude higher than the state of the art in the telecommunication C band. Further, we realize an ultra-bright, broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band. The InGaP entangled photon source shows high coincidence-to-accidental counts ratio CAR > 104and two-photon interference visibility > 98%. The InGaP second-order nonlinear photonics platform will have wide-ranging implications for non-classical light generation, optical signal processing, and quantum networking.more » « less
An official website of the United States government
