We describe recent work towards a fully-integrated single-photon source based on the use of single atoms captured from a grating magneto-optical trap (GMOT). Single Rb atoms from a ber-coupled GMOT will be loaded into an optical dipole trap formed by light from an integrated polarization-maintaining (PM) ber. Trapped single atoms will be excited to the 2P1/2 state using resonant light. The resulting single-photon fluorescence will be collected through the same PM ber as is used for trapping, and routed to further experiments. We describe progress towards an intermediate imple- mentation incorporating integrated optical bers and free space light sources. The completed, fully-integrated single-photon source will have numerous applications in quantum communications and quantum information processing, and particularly in improvement of the performance of quantum key distribution systems.
more »
« less
Integrated photonic structures for photon-mediated entanglement of trapped ions
Trapped atomic ions are natural candidates for quantum information processing and have the potential to realize or improve quantum computing, sensing, and networking. These applications often require the collection of individual photons emitted from ions into guided optical modes, in some cases for the production of entanglement between separated ions. Proof-of-principle demonstrations of such photon collection from trapped ions have been performed using high-numerical-aperture lenses or cavities and single-mode fibers, but integrated photonic elements in ion-trap structures offer advantages in scalability and manufacturability over traditional optics. In this paper we analyze structures monolithically fabricated with an ion trap for collecting ion-emitted photons, coupling them into waveguides, and manipulating them via interference. We calculate geometric limitations on collection efficiency for this scheme, simulate a single-layer grating that shows performance comparable to demonstrated free-space optics, and discuss practical fabrication and fidelity considerations. Based on this analysis, we conclude that integrated photonics can support scalable systems of trapped ions that can distribute quantum information via photon-mediated entanglement.
more »
« less
- Award ID(s):
- 2016136
- PAR ID:
- 10593067
- Publisher / Repository:
- Optica
- Date Published:
- Journal Name:
- Optica Quantum
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2837-6714
- Page Range / eLocation ID:
- 230
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fluorescence collection from individual emitters plays a key role in state detection and remote entanglement generation, fundamental functionalities in many quantum platforms. Planar photonics have been demonstrated for robust and scalable addressing of trapped-ion systems, motivating consideration of similar elements for the complementary challenge of photon collection. Here, using an argument from the reciprocity principle, we show that far-field photon collection efficiency can be simply expressed in terms of the fields associated with the collection optic at the emitter position alone. We calculate collection efficiencies into ideal paraxial and fully vectorial focused Gaussian modes parameterized in terms of focal waist, and further quantify the modest enhancements possible with more general beam profiles, establishing design requirements for efficient collection. Toward practical implementation, we design, fabricate, and characterize two diffractive collection elements operating atλ = 397 nm; a forward emitting design is predicted to offer 0.25% collection efficiency into a single waveguide mode, while a more efficient reverse-emitting design offers 1.14% collection efficiency, albeit with more demanding fabrication requirements. Close agreement between simulated and measured emission for both designs indicates practicality of these collection efficiencies, and we indicate avenues to improved devices approaching the limits predicted for ideal beams. We point out a particularly simple integrated waveguide configuration for polarization-based remote entanglement generation enabled by integrated collection.more » « less
-
Motivated by recent advances in the development of single photon emitters for quantum information sciences, here we design and formulate a quantum cascade model that describes cascade emission by a quantum dot (QD) in a cavity structure while preserving entanglement that stores information needed for single photon emission. The theoretical approach is based on a photonic structure that consists of two orthogonal cavities in which resonance with either the first or second of the two emitted photons is possible, leading to amplification and rerouting of the entangled light. The cavity–QD scheme uses a four-level cascade emitter that involves three levels for each polarization, leading to two spatially entangled photons for each polarization. By solving the Schrodinger equation, we identify the characteristic properties of the system, which can be used in conjunction with optimization techniques to achieve the “best” design relative to a set of prioritized criteria or constraints in our optical system. The theoretical investigations include an analysis of emission spectra in addition to the joint spectral density profile, and the results demonstrate the ability of the cavities to act as frequency filters for the photons that make up the entanglements and to modify entanglement properties. The results provide new opportunities for the experimental design and engineering of on-demand single photon sources.more » « less
-
We report on progress towards a single atom, single photon source using a fiber connected optical chip. Quantum experiments with cold atoms are burdened by the complexity of the experimental apparatus. Using fiber connectorized optics and a grating MOT suitable for cooling Rb atoms we fabricate a pre-aligned device usable as a single photon source for quantum communication experiments. The device integrates a grating MOT with a single beam dipole trap produced by a fiber and GRIN lens combination. MOT atoms are loaded into the dipole trap and then used as a source of single photons which are collected by the same optical fiber. We will report on details of the fabrication of the optical chip, experimental characterization, and progress towards generating high purity single photons.more » « less
-
Trapped ions offer long coherence times and high fidelity, programmable quantum operations, making them a promising platform for quantum simulation of condensed matter systems, quantum dynamics, and problems related to high-energy physics. We review selected developments in trapped-ion qubits and architectures and discuss quantum simulation applications that utilize these emerging capabilities. This review emphasizes developments in digital (gate-based) quantum simulations that exploit trapped-ion hardware capabilities, such as flexible qubit connectivity, selective mid-circuit measurement, and classical feedback, to simulate models with long-range interactions, explore nonunitary dynamics, compress simulations of states with limited entanglement, and reduce the circuit depths required to prepare or simulate long-range entangled states.more » « less
An official website of the United States government

