skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerated convergence via adiabatic sampling for adsorption and desorption processes
Under isothermal conditions, phase transitions occur through a nucleation event when conditions are sufficiently close to coexistence. The formation of a nucleus of the new phase requires the system to overcome a free energy barrier of formation, whose height rapidly rises as supersaturation decreases. This phenomenon occurs both in the bulk and under confinement and leads to a very slow kinetics for the transition, ultimately resulting in hysteresis, where the system can remain in a metastable state for a long time. This has broad implications, for instance, when using simulations to predict phase diagrams or screen porous materials for gas storage applications. Here, we leverage simulations in an adiabatic statistical ensemble, known as adiabatic grand-isochoric ensemble (μ, V, L) ensemble, to reach equilibrium states with a greater efficiency than its isothermal counterpart, i.e., simulations in the grand-canonical ensemble. For the bulk, we show that at low supersaturation, isothermal simulations converge slowly, while adiabatic simulations exhibit a fast convergence over a wide range of supersaturation. We then focus on adsorption and desorption processes in nanoporous materials, assess the reliability of (μ, V, L) simulations on the adsorption of argon in IRMOF-1, and demonstrate the efficiency of adiabatic simulations to predict efficiently the equilibrium loading during the adsorption and desorption of argon in MCM-41, a system that exhibits significant hysteresis. We provide quantitative measures of the increased rate of convergence when using adiabatic simulations. Adiabatic simulations explore a wide temperature range, leading to a more efficient exploration of the configuration space.  more » « less
Award ID(s):
2240526
PAR ID:
10569393
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
10
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A bulk gadolinium (Gd) single crystal exhibits virtually zero remnant magnetization, a common trait among soft uniaxial ferromagnets. This characteristic is reflected in our magnetometry data showing virtually hysteresis free isothermal magnetization loops with large saturation magnetization. The absence of hysteresis allows to model the measured easy axis magnetization as a function of temperature and applied magnetic field, rather than a relation, which permits the application of Maxwell relations from equilibrium thermodynamics. Demagnetization effects broaden the isothermal first-order transition from negative to positive magnetization. By analyzing magnetization data within the coexistence regime, we deduce the isothermal entropy change and the field-induced heat capacity change. Comparing the numerically inferred heat capacity with relaxation calorimetric data confirms the applicability of the Maxwell relation. Analysis of the entropy in the mixed phase region suggests the presence of hitherto unresolved nanoscale magnetic structures in the demagnetized state of Gd. To support this prediction, Monte Carlo simulations of a 3D Ising model with dipolar interactions are performed. Analyzing the cluster size statistics and magnetization from the model provides strong qualitative support of our analytic approach. 
    more » « less
  2. Dissociative adsorption onto a surface introduces dynamic correlations between neighboring sites not found in non-dissociative absorption. We study surface coverage dynamics where reversible dissociative adsorption of dimers occurs on a finite linear lattice. We derive analytic expressions for the equilibrium surface coverage as a function of the number of reactive sites, N, and the ratio of the adsorption and desorption rates. Using these results, we characterize the finite size effect on the equilibrium surface coverage. For comparable N’s, the finite size effect is significantly larger when N is even than when N is odd. Moreover, as N increases, the size effect decays more slowly in the even case than in the odd case. The finite-size effect becomes significant when adsorption and desorption rates are considerably different. These finite-size effects are related to the number of accessible configurations in a finite system where the odd-even dependence arises from the limited number of accessible configurations in the even case. We confirm our analytical results with kinetic Monte Carlo simulations. We also analyze the surface-diffusion case where adsorbed atoms can hop into neighboring sites. As expected, the odd-even dependence disappears because more configurations are accessible in the even case due to surface diffusion. 
    more » « less
  3. Abstract Turbulent fluctuations of scalar and velocity fields are critical for cloud microphysical processes, e.g., droplet activation and size distribution evolution, and can therefore influence cloud radiative forcing and precipitation formation. Lagrangian and Eulerian water vapor, temperature, and supersaturation statistics are investigated in direct numerical simulations (DNS) of turbulent Rayleigh–Bénard convection in the Pi Convection Cloud Chamber to provide a foundation for parameterizing subgrid-scale fluctuations in atmospheric models. A subgrid model for water vapor and temperature variances and covariance and supersaturation variance is proposed, valid for both clear and cloudy conditions. Evaluation of phase change contributions through an a priori test using DNS data shows good performance of the model. Supersaturation is a nonlinear function of temperature and water vapor, and relative external fluxes of water vapor and heat (e.g., during entrainment-mixing and phase change) influence turbulent supersaturation fluctuations. Although supersaturation has autocorrelation and structure functions similar to the independent scalars (temperature and water vapor), the autocorrelation time scale of supersaturation differs. Relative scalar fluxes in DNS without cloud make supersaturation PDFs less skewed than the adiabatic case, where they are highly negatively skewed. However, droplet condensation changes the PDF shape response: it becomes positively skewed for the adiabatic case and negatively skewed when the sidewall relative fluxes are large. Condensation also increases correlations between water vapor and temperature in the presence of relative scalar fluxes but decreases correlations for the adiabatic case. These changes in correlation suppress supersaturation variability for the nonadiabatic cases and increase it for the adiabatic case. Implications of this work for subgrid microphysics modeling using a Lagrangian stochastic scheme are also discussed. 
    more » « less
  4. Strongly bound surface species like alkylamines adsorbed on the Brønsted acid site of aluminosilicate zeolites exhibit negligible rates of molecular desorption, preventing them from achieving an equilibrated state on experimentally relevant timescales that limit the measurement of their adsorption thermodynamics. Through adsorption-assisted desorption, whereby distinct alkylamines facilitate desorption from Brønsted acid sites, we demonstrate that equilibrated states are achieved. Breakthrough adsorption measurements reveal that while 2-butylammonium on a Brønsted acid site is irreversibly adsorbed, it readily undergoes molecular desorption when exposed to a distinct alkylamine like 2-propanamine. As a result, two-adsorbate equilibrium was achieved when exposing Brønsted acid sites of aluminosilicate zeolites to a binary vapor phase alkylamine mixture. By varying relative vapor phase partial pressures and temperatures, we demonstrate the ability to experimentally measure the adsorption enthalpy and entropy of alkylammonium adsorbates on mostly isolated Brønsted acid sites in H-ZSM-5 (Si/Al = 140). A multi-adsorbate Langmuir isotherm was found to quantitatively describe the co-adsorption of alkylamines varying in size and basicity over a wide range of conditions, through which the relative adsorption enthalpy and entropy of alkylamines were measured. Across a homologous family of sec-alkylamines (C3-C5) adsorbed on isolated Brønsted acid sites, a fixed contribution to the enthalpy (19 ± 4 kJ mol CH2-1) and entropy (25 ± 4 J mol CH2-1 K-1) of adsorption per methylene unit of was found to exist, likely resulting from electrostatic interactions between the alkyl chain and surrounding pore environment. 
    more » « less
  5. The authors recently reported that undercooled liquid Ag and Ag–Cu alloys both exhibit a first order phase transition from the homogeneous liquid (L-phase) to a heterogeneous solid-like G-phase under isothermal evolution. Here, we report a similar L–G transition and heterogenous G-phase in simulations of liquid Cu–Zr bulk glass. The thermodynamic description and kinetic features (viscosity) of the L-G-phase transition in Cu–Zr simulations suggest it corresponds to experimentally reported liquid–liquid phase transitions in Vitreloy 1 (Vit1) and other Cu–Zr-bearing bulk glass forming alloys. The Cu–Zr G-phase has icosahedrally ordered cores versus fcc/hcp core structures in Ag and Ag–Cu with a notably smaller heterogeneity length scale Λ . We propose the L–G transition is a phenomenon in metallic liquids associated with the emergence of elastic rigidity. The heterogeneous core–shell nano-composite structure likely results from accommodating strain mismatch of stiff core regions by more compliant intervening liquid-like medium. 
    more » « less