skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methane emission from a cool brown dwarf
Abstract Beyond our Solar System, aurorae have been inferred from radio observations of isolated brown dwarfs1,2. Within our Solar System, giant planets have auroral emission with signatures across the electromagnetic spectrum including infrared emission of H3+and methane. Isolated brown dwarfs with auroral signatures in the radio have been searched for corresponding infrared features, but only null detections have been reported3. CWISEP J193518.59-154620.3. (W1935 for short) is an isolated brown dwarf with a temperature of approximately 482 K. Here we report James Webb Space Telescope observations of strong methane emission from W1935 at 3.326 μm. Atmospheric modelling leads us to conclude that a temperature inversion of approximately 300 K centred at 1–10 mbar replicates the feature. This represents an atmospheric temperature inversion for a Jupiter-like atmosphere without irradiation from a host star. A plausible explanation for the strong inversion is heating by auroral processes, although other internal and external dynamical processes cannot be ruled out. The best-fitting model rules out the contribution of H3+emission, which is prominent in Solar System gas giants. However, this is consistent with rapid destruction of H3+at the higher pressure where the W1935 emission originates4 more » « less
Award ID(s):
1909776 2009177
PAR ID:
10571555
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
628
Issue:
8008
ISSN:
0028-0836
Page Range / eLocation ID:
511 to 514
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The coldest Y spectral type brown dwarfs are similar in mass and temperature to cool and warm (∼200–400 K) giant exoplanets. We can therefore use their atmospheres as proxies for planetary atmospheres, testing our understanding of physics and chemistry for these complex, cool worlds. At these cold temperatures, their atmospheres are cold enough for water clouds to form, and chemical timescales increase, increasing the likelihood of disequilibrium chemistry compared to warmer classes of planets. JWST observations are revolutionizing the characterization of these worlds with high signal-to-noise, moderate-resolution near- and mid-infrared spectra. The spectra have been used to measure the abundances of prominent species, like water, methane, and ammonia; species that trace chemical reactions, like carbon monoxide; and even isotopologues of carbon monoxide and ammonia. Here, we present atmospheric retrieval results using both published fixed-slit (Guaranteed Time Observation program 1230) and new averaged time series observations (GO program 2327) of the coldest known Y dwarf, WISE 0855–0714 (using NIRSpec G395M spectra), which has an effective temperature of ∼264 K. We present a detection of deuterium in an atmosphere outside of the solar system via a relative measurement of deuterated methane (CH3D) and standard methane. From this, we infer the D/H ratio of a substellar object outside the solar system for the first time. We also present a well-constrained part-per-billion abundance of phosphine (PH3). We discuss our interpretation of these results and the implications for brown dwarf and giant exoplanet formation and evolution. 
    more » « less
  2. Abstract In pursuit of diamond nanoparticles, a capacitively-coupled radio frequency flow-through plasma reactor was operated with methane-argon gas mixtures. Signatures of the final product obtained microscopically and spectroscopically indicated that the product was an amorphous form of graphite. This result was consistent irrespective of combinations of the macroscopic reactor settings. To explain the observed synthesis output, measurements of C2and gas properties were carried out by laser-induced fluorescence and optical emission spectroscopy. Strikingly, the results indicated a strong gas temperature gradient of 100 K per mm from the center of the reactor to the wall. Based on additional plasma imaging, a model of hot constricted region (filamentation region) was then formulated. It illustrated that, while the hot constricted region was present, the bulk of the gas was not hot enough to facilitate diamondsp3formation: characterized by much lower reaction rates, when compared tosp2,sp3formation kinetics are expected to become exponentially slow. This result was further confirmed by experiments under identical conditions but with a H2/CH4mixture, where no output material was detected: if graphiticsp2formation was expected as the main output material from the methane feedstock, atomic hydrogen would then be expected to etch it awayin situ, such that the net production of thatsp2-hybridized solid material is nearly a zero. Finally, the crucial importance of gas heating was corroborated by replacing RF with microwave source whereby facilesp3production was attained with H2/CH4gas mixture. 
    more » « less
  3. Abstract Y dwarfs, the coolest known spectral class of brown dwarfs, overlap in mass and temperature with giant exoplanets, providing unique laboratories for studying low-temperature atmospheres. However, only a fraction of Y dwarf candidates have been spectroscopically confirmed. We present Keck/NIRES near-infrared spectroscopy of the nearby (d≈ 6–8 pc) brown dwarf CWISE J105512.11+544328.3. Although its near-infrared spectrum aligns best with the Y0 standard in theJband, no standard matches well across the fullYJHKwavelength range. The CWISE J105512.11+544328.3 NH3-H= 0.427 ± 0.0012 and CH4-J= 0.0385 ± 0.0007 absorption indices and absolute Spitzer [4.5] magnitude of 15.18 ± 0.22 are also indicative of an early-Y dwarf rather than a late-T dwarf. CWISE J105512.11+544328.3 additionally exhibits the bluest Spitzer [3.6]−[4.5] color among all spectroscopically confirmed Y dwarfs. Despite this anomalously blue Spitzer color given its low luminosity, CWISE J105512.11+544328.3 does not show other clear kinematic or spectral indications of low metallicity. Atmospheric model comparisons yield a log(g) ≤ 4.5 andTeff≈ 500 ± 150 K for this source. We classify CWISE J105512.11+544328.3 as a Y0 (pec) dwarf, adding to the remarkable diversity of the Y-type population. JWST spectroscopy would be crucial to understanding the origin of this Y dwarf’s unusual preference for low-gravity models and blue 3–5μm color. 
    more » « less
  4. As an initial pilot study of magnetism in Y dwarfs, we have observed the three known IR variable Y dwarfs WISE J085510.83-071442.5, WISE J140518.40+553421.4, and WISEP J173835.53+273258.9 with the Karl G. Jansky Very Large Array (VLA) from 4-8 GHz to investigate the presence of quiescent radio emission as a proxy for highly circularly polarized radio emission associated with large-scale auroral currents. Measurements of magnetic fields on Y dwarfs, currently only possible by observing auroral radio emission, are essential for constraining fully convective magnetic dynamo models. We do not detect any pulsed or quiescent radio emission, down to rms noise levels of 7.2 uJy for WISE J085510.83-071442.5, 2.2 uJy for WISE J140518.40+553421.4, and 3.2 uJy for WISEP J173835.53+273258.9. The fractional detection rate of radio emission from T dwarfs is <10% and suggests that a much larger sample of deep observations of Y dwarfs is needed to rule out radio emission in the Y dwarf population. The significance of a single detection provides strong motivation for such a search. 
    more » « less
  5. Abstract Close-in giant exoplanets with temperatures greater than 2,000 K (‘ultra-hot Jupiters’) have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble Space Telescope (HST) and Spitzer Space Telescope1–3. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis3–12. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS13instrument on the JWST. The data span 0.85 to 2.85 μm in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at >6σconfidence) and evidence for optical opacity, possibly attributable to H, TiO and VO (combined significance of 3.8σ). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy-element abundance (‘metallicity’,$${\rm{M/H}}=1.0{3}_{-0.51}^{+1.11}$$ M/H = 1.0 3 0.51 + 1.11 times solar) and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the substellar point that decreases steeply and symmetrically with longitude towards the terminators. 
    more » « less