skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Significant Midlatitude Bubble‐Like Ionospheric Super‐Depletion Structure (BLISS) and Dynamic Variation of Storm‐Enhanced Density Plume During the 23 April 2023 Geomagnetic Storm
Abstract This paper investigates the midlatitude ionospheric disturbances over the American/Atlantic longitude sector during an intense geomagnetic storm on 23 April 2023. The study utilized a combination of ground‐based observations (Global Navigation Satellite System total electron content and ionosonde) along with measurements from multiple satellite missions (GOLD, Swarm, Defense Meteorological Satellite Program, and TIMED/GUVI) to analyze storm‐time electrodynamics and neutral dynamics. We found that the storm main phase was characterized by distinct midlatitude ionospheric density gradient structures as follows: (a) In the European‐Atlantic longitude sector, a significant midlatitude bubble‐like ionospheric super‐depletion structure (BLISS) was observed after sunset. This BLISS appeared as a low‐density channel extending poleward/westward and reached ∼40° geomagnetic latitude, corresponding to an APEX height of ∼5,000 km. (b) Coincident with the BLISS, a dynamic storm‐enhanced density plume rapidly formed and decayed at local afternoon in the North American sector, with the plume intensity being doubled and halved in just a few hours. (c) The simultaneous occurrence of these strong yet opposite midlatitude gradient structures could be mainly attributed to common key drivers of prompt penetration electric fields and subauroral polarization stream electric fields. This shed light on the important role of storm‐time electrodynamic processes in shaping global ionospheric disturbances.  more » « less
Award ID(s):
2149698 2033787 1952737
PAR ID:
10571720
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Space Weather
Volume:
22
Issue:
3
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study investigates midlatitude ionospheric variations during the super geomagnetic storm on 10–11 May 2024, utilizing multi‐instrument data from ground‐based sources (Global Navigation Satellite Systems receivers and a Fabry–Perot Interferometer) and space‐based measurements (Swarm and DMSP). We observed several distinct density gradient structures in the midlatitude ionosphere, with the main findings summarized as follows: (a) Significant zonal plasma density enhancements developed continuously in local dusk across the American‐Pacific‐Asian longitude sectors around geomagnetic latitude. These midlatitude peaks exhibited a wide longitudinal extension exceeding 150 and a prolonged duration of 12–15 hr during the late main phase and early recovery phase of the storm. (b) Strong storm‐enhanced density (SED) was observed in both hemispheres yet with different longitudinal and universal time preferences. In the Northern Hemisphere, significant SED occurred over the American longitude sector during 20:30–22:30 UT on May 10. In the Southern Hemisphere, pronounced SED was observed not only in the American longitudes during 20:30–22:30 UT on May 10 but also in the Australian longitude sector during 02:00–04:00 UT on May 11. 
    more » « less
  2. Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change. 
    more » « less
  3. Abstract This paper conducts a multi‐instrument analysis and data assimilation study of midlatitude ionospheric disturbances over the European and North American longitude sectors during a strong geomagnetic storm on 26–28 February 2023. The study uses a set of ground‐based (GNSS receivers, ionosondes) observations, space‐borne (DMSP, GOLD) measurements, and a new TEC‐based ionospheric data assimilation system (TIDAS). We observed a series of distinct storm‐time features with regard to storm‐enhanced density (SED) and subauroral polarization stream (SAPS) as follows: (a) Under multiple ring current intensifications, the storm‐time subauroral ionosphere produced long‐lasting duskside SAPS for ∼36 hr along with considerable dawnside SAPS for several hours. (b) Associated with long‐lived SAPS, strong SED occurred consecutively in the European longitude sector near local noon during a positive ionospheric storm and later in the North American longitude sector near local dusk during a negative ionospheric storm. (c) The 3‐D morphology of SED in multiple longitude sectors was reconstructed using TIDAS data assimilation technique with fine‐scale details, which revealed a narrow ionospheric plasma channel with electron density enhancement and layer uplift. 
    more » « less
  4. Abstract The storm‐enhanced density (SED) is a large‐scale midlatitude ionospheric electron density enhancement in the local afternoon sector, which exhibits substantial spatial gradients and thus can impose detrimental effects on modern navigation and communication systems, causing potential space weather hazards. This study has identified a comprehensive list of 49 SED events over the continental US and adjacent regions, by examining strong geomagnetic storms occurring between 2000 and 2023. The ground‐based Global Navigation Satellite System (GNSS) total electron content and data from a new TEC‐based ionospheric data assimilation system were used to analyze the characteristics of SED. For each derived SED events, we have quantified its morphology by employing a Gaussian function to parameterize key characteristics of the SED, such as the plume intensity, central longitude, and half‐width. A statistical analysis of SEDs was conducted for the first time to characterize their climatological features. We found that the SED distribution exhibits a higher peak intensity and a narrower width as geomagnetic activity strengthens. The peak intensity of SED has maximum values around the equinoxes in their seasonal distribution. Additionally, we observed a solar cycle dependence in the SED distribution, with more events occurring during the solar maximum and declining phases compared to the solar minimum. SED plumes exhibit a sub‐corotation feature with respect to the Earth, characterized by a westward drift speed between 50 and 400 m/s and a duration of 3–10 hr. These information advanced the current understanding of the spatial‐temporal variation of SED characteristics. 
    more » « less
  5. Abstract This study has developed a new TEC‐based ionospheric data assimilation system for 3‐D regional ionospheric imaging over the South American sector (TIDAS‐SA) (45°S–15°N, 35°–85°W, and 100–800 km). The TIDAS‐SA data assimilation system utilizes a hybrid Ensemble‐Variational approach to incorporate a diverse set of ionospheric data sources, including dense ground‐based Global Navigation Satellite System (GNSS) line‐of‐sight Total Electron Content (TEC) data, radio occultation data from the Constellation Observing System for Meteorology, Ionosphere, and Climate‐2 (COSMIC‐2), and altimeter TEC data from the JASON‐3 satellite. TIDAS‐SA can produce a reanalyzed three‐dimensional (3‐D) electron density spatial variation with a high time cadence, yielding spatial‐temporal resolution of 1° (latitude) × 1° (longitude) × 20 km (altitude) × 5 min. This allows us to reconstruct and study the 3‐D ionospheric morphology with multi‐scale structures. The performance of the data assimilation system is validated against independent ionosonde and in situ measurements through an experiment for a strong geomagnetic storm event on 03–04 November 2021. The results demonstrate that TIDAS‐SA can provide detailed and altitude‐resolved information that accurately characterizes the storm‐time ionospheric disturbances in vertical and horizontal domains over the equatorial and low‐latitude regions of South America. 
    more » « less