skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comprehensive Analysis of the NOAA National Water Model: A Call for Heterogeneous Formulations and Diagnostic Model Selection
Abstract With an increasing number of continental‐scale hydrologic models, the ability to evaluate performance is key to understanding uncertainty and making improvements to the model(s). We hypothesize that any model, running a single set of physics, cannot be “properly” calibrated for the range of hydroclimatic diversity as seen in the contenintal United States. Here, we evaluate the NOAA National Water Model (NWM) version 2.0 historical streamflow record in over 4,200 natural and controlled basins using the Nash‐Sutcliffe Efficiency metric decomposed into relative performance, and conditional, and unconditional bias. Each of these is evaluated in the contexts of meteorologic, landscape, and anthropogenic characteristics to better understand where the model does poorly, what potentially causes the poor performance, and what similarities systemically poor performing areas share. The primary objective is to pinpoint traits in places with good/bad performance and low/high bias. NWM relative performance is higher when there is high precipitation, snow coverage (depth and fraction), and barren area. Low relative skill is associated with high potential evapotranspiration, aridity, moisture‐and‐energy phase correlation, and forest, shrubland, grassland, and imperviousness area. We see less bias in locations with high precipitation, moisture‐and‐energy phase correlation, barren, and grassland areas and more bias in areas with high aridity, snow coverage/fraction, and urbanization. The insights gained can help identify key hydrological factors underpinning NWM predictive skill; enforce the need for regionalized parameterization and modeling; and help inform heterogenous modeling systems, like the NOAA Next Generation Water Resource Modeling Framework, to enhance ongoing development and evaluation.  more » « less
Award ID(s):
2033607
PAR ID:
10572609
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
24
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Discharge values from the National Water Model (NWM) were compared to USGS stream gage discharge observations for the suburban Red Clay Creek watershed (drainage area ~140 km2 and mixed land-use), in Pennsylvania and Delaware, from 2016 to 2018. 18-hour retrospective simulations from the NWM were used with concurrent hourly USGS discharge observations from three locations along the Red Clay Creek. Results indicate that the mean of discharge estimates from the NWM and from USGS observations significantly differed and that the NWM generally underestimates low-flow conditions and overestimates high-flow conditions. Watershed size also impacted NWM performance (with performance degrading in smaller watersheds). A meteorological analysis determined that convective rainfall events were associated with 66% of the largest differences between NWM discharge estimates and USGS observations while mid-latitude cyclone stratiform precipitation events accounted for the other 34%. Lastly, of the largest 15 differences between the NWM and observations, 13 occurred with pre-cursor soil moisture that was below the mean (dry soil conditions), in conjunction with heavy rainfall. Given the NWM’s recent operational implementation, and its status as Prototype guidance, the results of this study present specific geographical and climatological findings that can aid in the NWM’s continued validation and improvement for similar regions. 
    more » « less
  2. Abstract This study investigates skill enhancement in operational seasonal forecasts of Beijing Climate Center’s Climate System Model through regional Climate-Weather Research and Forecasting (CWRF) downscaling and improved land initialization in China. The downscaling mitigates regional climate biases, enhancing precipitation pattern correlations by 0.29 in spring and 0.21 in summer. It also strengthens predictive capabilities for interannual anomalies, expanding skillful temperature forecast areas by 6% in spring and 12% in summer. Remarkably, during seven of ten years with relative high predictability, the downscaling increases average seasonal precipitation anomaly correlations by 0.22 and 0.25. Additionally, substitution of initial land conditions via a Common Land Model integration reduces snow cover and cold biases across the Tibetan Plateau and Mongolia-Northeast China, consistently contributing to CWRF’s overall enhanced forecasting capabilities. Improved downscaling predictive skill is attributed to CWRF’s enhanced physics representation, accurately capturing intricate regional interactions and associated teleconnections across China, especially linked to the Tibetan Plateau’s blocking and thermal effects. In summer, CWRF predicts an intensified South Asian High alongside a strengthened East Asian Jet compared to CSM, amplifying cold air advection and warm moisture transport over central to northeast regions. Consequently, rainfall distributions and interannual anomalies over these areas experience substantial improvements. Similar enhanced circulation processes elucidate skill improvement from land initialization, where accurate specification of initial snow cover and soil temperature within sensitive regions persists in influencing local and remote circulations extending beyond two seasons. Our findings emphasize the potential of improving physics representation and surface initialization to markedly enhance regional climate predictions. 
    more » « less
  3. Abstract Uncertainty attribution in water supply forecasting is crucial to improve forecast skill and increase confidence in seasonal water management planning. We develop a framework to quantify fractional forecast uncertainty and partition it between (1) snowpack quantification methods, (2) variability in post‐forecast precipitation, and (3) runoff model errors. We demonstrate the uncertainty framework with statistical runoff models in the upper Tuolumne and Merced River basins (California, USA) using snow observations at two endmember spatial resolutions: a simple snow pillow index and full‐catchment snow water equivalent (SWE) maps at 50 m resolution from the Airborne Snow Observatories. Bayesian forecast simulations demonstrate a nonlinear decrease in the skill of statistical water supply forecasts during warm snow droughts, when a low fraction of winter precipitation remains as SWE. Forecast skill similarly decreases during dry snow droughts, when winter precipitation is low. During a shift away from snow‐dominance, the uncertainty of forecasts using snow pillow data increases about 1.9 times faster than analogous forecasts using full‐catchment SWE maps in the study area. Replacing the snow pillow index with full‐catchment SWE data reduces statistical forecast uncertainty by 39% on average across all tested climate conditions. Attributing water supply forecast uncertainty to reducible error sources reveals opportunities to improve forecast reliability in a warmer future climate. 
    more » « less
  4. Abstract Water temperature forecasting in lakes and reservoirs is a valuable tool to manage crucial freshwater resources in a changing and more variable climate, but previous efforts have yet to identify an optimal modeling approach. Here, we demonstrate the first multi‐model ensemble (MME) reservoir water temperature forecast, a forecasting method that combines individual model strengths in a single forecasting framework. We developed two MMEs: a three‐model process‐based MME and a five‐model MME that includes process‐based and empirical models to forecast water temperature profiles at a temperate drinking water reservoir. We found that the five‐model MME improved forecast performance by 8%–30% relative to individual models and the process‐based MME, as quantified using an aggregated probabilistic skill score. This increase in performance was due to large improvements in forecast bias in the five‐model MME, despite increases in forecast uncertainty. High correlation among the process‐based models resulted in little improvement in forecast performance in the process‐based MME relative to the individual process‐based models. The utility of MMEs is highlighted by two results: (a) no individual model performed best at every depth and horizon (days in the future), and (b) MMEs avoided poor performances by rarely producing the worst forecast for any single forecasted period (<6% of the worst ranked forecasts over time). This work presents an example of how existing models can be combined to improve water temperature forecasting in lakes and reservoirs and discusses the value of utilizing MMEs, rather than individual models, in operational forecasts. 
    more » « less
  5. Abstract Tropical areas with mean upward motion—and as such the zonal-mean intertropical convergence zone (ITCZ)—are projected to contract under global warming. To understand this process, a simple model based on dry static energy and moisture equations is introduced for zonally symmetric overturning driven by sea surface temperature (SST). Processes governing ascent area fraction and zonal mean precipitation are examined for insight into Atmospheric Model Intercomparison Project (AMIP) simulations. Bulk parameters governing radiative feedbacks and moist static energy transport in the simple model are estimated from the AMIP ensemble. Uniform warming in the simple model produces ascent area contraction and precipitation intensification—similar to observations and climate models. Contributing effects include stronger water vapor radiative feedbacks, weaker cloud-radiative feedbacks, stronger convection-circulation feedbacks, and greater poleward moisture export. The simple model identifies parameters consequential for the inter-AMIP-model spread; an ensemble generated by perturbing parameters governing shortwave water vapor feedbacks and gross moist stability changes under warming tracks inter-AMIP-model variations with a correlation coefficient ∼0.46. The simple model also predicts the multimodel mean changes in tropical ascent area and precipitation with reasonable accuracy. Furthermore, the simple model reproduces relationships among ascent area precipitation, ascent strength, and ascent area fraction observed in AMIP models. A substantial portion of the inter-AMIP-model spread is traced to the spread in how moist static energy and vertical velocity profiles change under warming, which in turn impact the gross moist stability in deep convective regions—highlighting the need for observational constraints on these quantities. Significance Statement A large rainband straddles Earth’s tropics. Most, but not all, climate models predict that this rainband will shrink under global warming; a few models predict an expansion of the rainband. To mitigate some of this uncertainty among climate models, we build a simpler model that only contains the essential physics of rainband narrowing. We find several interconnected processes that are important. For climate models, the most important process is the efficiency with which clouds move heat and humidity out of rainy regions. This efficiency varies among climate models and appears to be a primary reason for why climate models do not agree on the rate of rainband narrowing. 
    more » « less