skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inception: Efficiently Computable Misinformation Attacks on Markov Games
We study security threats to Markov games due to information asymmetry and misinformation. We consider an attacker player who can spread misinformation about its reward function to influence the robust victim player's behavior. Given a fixed fake reward function, we derive the victim's policy under worst-case rationality and present polynomial-time algorithms to compute the attacker's optimal worst-case policy based on linear programming and backward induction. Then, we provide an efficient inception (""planting an idea in someone's mind"") attack algorithm to find the optimal fake reward function within a restricted set of reward functions with dominant strategies. Importantly, our methods exploit the universal assumption of rationality to compute attacks efficiently. Thus, our work exposes a security vulnerability arising from standard game assumptions under misinformation.  more » « less
Award ID(s):
2339794 1955997
PAR ID:
10573133
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Reinforcement Learning Journal
Date Published:
Volume:
5
Page Range / eLocation ID:
2345--2358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robust Markov decision processes (MDPs) aim to find a policy that optimizes the worst-case performance over an uncertainty set of MDPs. Existing studies mostly have focused on the robust MDPs under the discounted reward criterion, leaving the ones under the average-reward criterion largely unexplored. In this paper, we develop the first comprehensive and systematic study of robust average-reward MDPs, where the goal is to optimize the long-term average performance under the worst case. Our contributions are four-folds: (1) we prove the uniform convergence of the robust discounted value function to the robust average-reward function as the discount factor γ goes to 1; (2) we derive the robust average-reward Bellman equation, characterize the structure of its solution set, and prove the equivalence between solving the robust Bellman equation and finding the optimal robust policy; (3) we design robust dynamic programming algorithms, and theoretically characterize their convergence to the optimal policy; and (4) we design two model-free algorithms unitizing the multi-level Monte-Carlo approach, and prove their asymptotic convergence 
    more » « less
  2. In robust Markov decision processes (MDPs), the uncertainty in the transition kernel is addressed by finding a policy that optimizes the worst-case performance over an uncertainty set of MDPs. While much of the literature has focused on discounted MDPs, robust average-reward MDPs remain largely unexplored. In this paper, we focus on robust average-reward MDPs, where the goal is to find a policy that optimizes the worst-case average reward over an uncertainty set. We first take an approach that approximates average-reward MDPs using discounted MDPs. We prove that the robust discounted value function converges to the robust average-reward as the discount factor goes to 1, and moreover when it is large, any optimal policy of the robust discounted MDP is also an optimal policy of the robust average-reward. We further design a robust dynamic programming approach, and theoretically characterize its convergence to the optimum. Then, we investigate robust average-reward MDPs directly without using discounted MDPs as an intermediate step. We derive the robust Bellman equation for robust average-reward MDPs, prove that the optimal policy can be derived from its solution, and further design a robust relative value iteration algorithm that provably finds its solution, or equivalently, the optimal robust policy. 
    more » « less
  3. Poupart, Pascal (Ed.)
    Incentive design, also known as model design or environment design for Markov decision processes(MDPs), refers to a class of problems in which a leader can incentivize his follower by modifying the follower's reward function, in anticipation that the follower's optimal policy in the resulting MDP can be desirable for the leader's objective. In this work, we propose gradient-ascent algorithms to compute the leader's optimal incentive design, despite the lack of knowledge about the follower's reward function. First, we formulate the incentive design problem as a bi-level optimization problem and demonstrate that, by the softmax temporal consistency between the follower's policy and value function, the bi-level optimization problem can be reduced to single-level optimization, for which a gradient-based algorithm can be developed to optimize the leader's objective. We establish several key properties of incentive design in MDPs and prove the convergence of the proposed gradient-based method. Next, we show that the gradient terms can be estimated from observations of the follower's best response policy, enabling the use of a stochastic gradient-ascent algorithm to compute a locally optimal incentive design without knowing or learning the follower's reward function. Finally, we analyze the conditions under which an incentive design remains optimal for two different rewards which are policy invariant. The effectiveness of the proposed algorithm is demonstrated using a small probabilistic transition system and a stochastic gridworld. 
    more » « less
  4. We present an algorithm based on posterior sampling (aka Thompson sampling) that achieves near-optimal worst-case regret bounds when the underlying Markov decision process (MDP) is communicating with a finite, although unknown, diameter. Our main result is a high probability regret upper bound of [Formula: see text] for any communicating MDP with S states, A actions, and diameter D. Here, regret compares the total reward achieved by the algorithm to the total expected reward of an optimal infinite-horizon undiscounted average reward policy in time horizon T. This result closely matches the known lower bound of [Formula: see text]. Our techniques involve proving some novel results about the anti-concentration of Dirichlet distribution, which may be of independent interest. 
    more » « less
  5. In many real-world problems, we are faced with the problem of selecting the best among a finite number of alternatives, where the best alternative is determined based on context specific information. In this work, we study the contextual Ranking and Selection problem under a finite-alternative-finite-context setting, where we aim to find the best alternative for each context. We use a separate Gaussian process to model the reward for each alternative and derive the large deviations rate function for both the expected and worst-case contextual probability of correct selection. We propose the GP-C-OCBA sampling policy, which uses the Gaussian process posterior to iteratively allocate observations to maximize the rate function. We prove its consistency and show that it achieves the optimal convergence rate under the assumption of a non-informative prior. Numerical experiments show that our algorithm is highly competitive in terms of sampling efficiency, while having significantly smaller computational overhead. 
    more » « less