Abstract The enhanced safety, superior energy, and power density of rechargeable metal‐air batteries make them ideal energy storage systems for application in energy grids and electric vehicles. However, the absence of a cost‐effective and stable bifunctional catalyst that can replace expensive platinum (Pt)‐based catalyst to promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air cathode hinders their broader adaptation. Here, it is demonstrated that Tin (Sn) doped β‐gallium oxide (β‐Ga2O3) in the bulk form can efficiently catalyze ORR and OER and, hence, be applied as the cathode in Zn‐air batteries. The Sn‐doped β‐Ga2O3sample with 15% Sn (Snx=0.15‐Ga2O3) displayed exceptional catalytic activity for a bulk, non‐noble metal‐based catalyst. When used as a cathode, the excellent electrocatalytic bifunctional activity of Snx=0.15‐Ga2O3leads to a prototype Zn‐air battery with a high‐power density of 138 mW cm−2and improved cycling stability compared to devices with benchmark Pt‐based cathode. The combined experimental and theoretical exploration revealed that the Lewis acid sites in β‐Ga2O3aid in regulating the electron density distribution on the Sn‐doped sites, optimize the adsorption energies of reaction intermediates, and facilitate the formation of critical reaction intermediate (O*), leading to enhanced electrocatalytic activity.
more »
« less
This content will become publicly available on November 7, 2025
Experimental and theoretical study of the Sn–O bond formation between atomic tin and molecular oxygen
In this article, we combine state-of-art electronic structure calculations and crossed beam experiments to expose the reaction dynamics of120Sn(3Pj) +16O2(X3Σ−g) →120Sn16O(X1Σ+) +16O(3P) reaction that involve extensive ISC.
more »
« less
- Award ID(s):
- 2244717
- PAR ID:
- 10575404
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 26
- Issue:
- 43
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 27763 to 27771
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Linear polyphosphonates with the generic formula –[P(Ph)(X)OR′O]n– (X = S or Se) have been synthesized by polycondensations of P(Ph)(NEt2)2and a diol (HOR′OH = 1,4‐cyclohexanedimethanol, 1,4‐benzenedimethanol, tetraethylene glycol, or 1,12‐dodecanediol) followed by reaction with a chalcogen. Random copolymers have been synthesized by polycondensations of P(Ph)(NEt2)2and mixture of two of the diols in a 2:1:1 mol ratio followed by reaction with a chalcogen. Block copolymers with the generic formula –[P(Ph)(X)OR′O](x + 2)–[P(Ph)(X)OR′O](x + 3)– (X = S or Se) have been synthesized by the polycondensations of Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers with HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers followed by reaction with a chalcogen. The Et2N[P(Ph)(X)OR′O](x + 2)P(Ph)NEt2oligomers are prepared by the reaction of an excess of P(Ph)(NEt2)2with a diol while the HOR′O[P(Ph)(X)OR′O](x + 3)H oligomers are prepared by the reaction of P(Ph)(NEt2)2with an excess of the diol. In each case the excess, x is the same and determines the average block sizes. All of the polymers were characterized using1H,13C{1H}, and31P{1H} NMR spectroscopy, TGA, DSC, and SEC.31P{1H} NMR spectroscopy demonstrates that the random and block copolymers have the expected arrangements of monomers and, in the case of block copolymers, verifies the block sizes. All polymers are thermally stable up to ~300°C, and the arrangements of monomers in the copolymers (block vs. random) affect their degradation temperatures andTgprofiles. The polymers have weight average MWs of up to 3.8 × 104 Da.more » « less
-
Abstract Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.more » « less
-
Abstract We consider the combined effects that overshooting and the12C(α,γ)16O reaction rate have on variable white dwarf (WD) stellar models. We find that carbon–oxygen (CO) WD models continue to yield pulsation signatures of the current experimental12C(α,γ)16O reaction rate probability distribution function when overshooting is included in the evolution. These signatures hold because the resonating mantle region, encompassing ≃0.2M⊙in a typical ≃0.6M⊙WD model, still undergoes radiative helium burning during the evolution to a WD. Our specific models show two potential low-order adiabatic g-modes,g2andg6, that signalize the12C(α,γ)16O reaction rate probability distribution function. Both g-mode signatures induce average relative period shifts of ΔP/P= 0.44% and ΔP/P= 1.33% forg2andg6, respectively. We find thatg6is a trapped mode, and theg2period signature is inversely proportional to the12C(α,γ)16O reaction rate. Theg6period signature generally separates the slower and faster reaction rates, and has a maximum relative period shift of ΔP/P= 3.45%. We conclude that low-order g-mode periods from CO WDs may still serve as viable probes for the12C(α,γ)16O reaction rate probability distribution function when overshooting is included in the evolution.more » « less
-
Abstract Reaction of {LiC6H2−2,4,6‐Cyp3⋅Et2O}2(Cyp=cyclopentyl) (1) of the new dispersion energy donor (DED) ligand, 2,4,6‐triscyclopentylphenyl with SnCl2afforded a mixture of the distannene {Sn(C6H2−2,4,6‐Cyp3)2}2(2), and the cyclotristannane {Sn(C6H2−2,4,6‐Cyp3)2}3(3).2is favored in solution at higher temperature (345 K or above) whereas3is preferred near 298 K. Van't Hoff analysis revealed the3to2conversion has a ΔH=33.36 kcal mol−1and ΔS=0.102 kcal mol−1 K−1, which gives a ΔG300 K=+2.86 kcal mol−1, showing that the conversion of3to2is an endergonic process. Computational studies show that DED stabilization in3is −28.5 kcal mol−1per {Sn(C6H2−2,4,6‐Cyp3)2unit, which exceeds the DED energy in2of −16.3 kcal mol−1per unit. The data clearly show that dispersion interactions are the main arbiter of the3to2equilibrium. Both2and3possess large dispersion stabilization energies which suppress monomer dissociation (supported by EDA results).more » « less
An official website of the United States government
