skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Spatio-temporal Top-k Interaction Queries on Dynamic Communities
Social media platforms generate massive amounts of data that reveal valuable insights about users and communities at large. Existing techniques have not fully exploited such data to help practitioners perform a deep analysis of large online communities. Lack of scalability hinders analyzing communities of large sizes and requires tremendous system resources and unacceptable runtime. This article proposes a new analytical query that identifies the top-kposts that a given user community has interacted with during a specific time interval and within a spatial range. We propose a novel indexing framework that captures the interactions of users and communities to provide a low query latency. Moreover, we propose exact and approximate algorithms to process the query efficiently and utilize the index content to prune the search space. The extensive experimental evaluation on real data has shown the superiority of our techniques and their scalability to support large online communities.  more » « less
Award ID(s):
2237348 2031418
PAR ID:
10575878
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Spatial Algorithms and Systems
Volume:
10
Issue:
1
ISSN:
2374-0353
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Online sampling-supported visual analytics is increasingly important, as it allows users to explore large datasets with acceptable approximate answers at interactive rates. However, existing online spatiotemporal sampling techniques are often biased, as most researchers have primarily focused on reducing computational latency. Biased sampling approaches select data with unequal probabilities and produce results that do not match the exact data distribution, leading end users to incorrect interpretations. In this paper, we propose a novel approach to perform unbiased online sampling of large spatiotemporal data. The proposed approach ensures the same probability of selection to every point that qualifies the specifications of a user's multidimensional query. To achieve unbiased sampling for accurate representative interactive visualizations, we design a novel data index and an associated sample retrieval plan. Our proposed sampling approach is suitable for a wide variety of visual analytics tasks, e.g., tasks that run aggregate queries of spatiotemporal data. Extensive experiments confirm the superiority of our approach over a state-of-the-art spatial online sampling technique, demonstrating that within the same computational time, data samples generated in our approach are at least 50% more accurate in representing the actual spatial distribution of the data and enable approximate visualizations to present closer visual appearances to the exact ones. 
    more » « less
  2. Retrieval-augmented generation (RAG) systems can effectively address user queries by leveraging indexed document corpora to retrieve the relevant contexts. Ranking techniques have been adopted in RAG systems to sort the retrieved contexts by their relevance to the query so that users can select the most useful contexts for their downstream tasks. While many existing ranking methods rely on the similarity between the embedding vectors of the context and query to measure relevance, it is important to note that similarity does not equate to relevance in all scenarios. Some ranking methods use large language models (LLMs) to rank the contexts by putting the query and the candidate contexts in the prompt and asking LLM about their relevance. The scalability of those methods is contingent on the number of candidate contexts and the context window of those LLMs. Also, those methods require fine-tuning the LLMs, which can be computationally expensive and require domain-related data. In this work, we propose a scalable ranking framework that does not involve LLM training. Our framework uses an off-the-shelf LLM to hypothesize the user's query based on the retrieved contexts and ranks the contexts based on the similarity between the hypothesized queries and the user query. Our framework is efficient at inference time and is compatible with many other context retrieval and ranking techniques. Experimental results show that our method improves the ranking performance of retrieval systems in multiple benchmarks. 
    more » « less
  3. Query understanding plays a key role in exploring users’ search intents. However, it is inherently challenging since it needs to capture semantic information from short and ambiguous queries and often requires massive task-specific labeled data. In recent years, pre-trained language models (PLMs) have advanced various natural language processing tasks because they can extract general semantic information from large-scale corpora. However, directly applying them to query understanding is sub-optimal because existing strategies rarely consider to boost the search performance. On the other hand, search logs contain user clicks between queries and urls that provide rich users’ search behavioral information on queries beyond their content. Therefore, in this paper, we aim to fill this gap by exploring search logs. In particular, we propose a novel graph-enhanced pre-training framework, GE-BERT, which leverages both query content and the query graph to capture both semantic information and users’ search behavioral information of queries. Extensive experiments on offline and online tasks have demonstrated the effectiveness of the proposed framework. 
    more » « less
  4. Schlick, Tamar (Ed.)
    Dictionary learning (DL), implemented via matrix factorization (MF), is commonly used in computational biology to tackle ubiquitous clustering problems. The method is favored due to its conceptual simplicity and relatively low computational complexity. However, DL algorithms produce results that lack interpretability in terms of real biological data. Additionally, they are not optimized for graph-structured data and hence often fail to handle them in a scalable manner. In order to address these limitations, we propose a novel DL algorithm calledonline convex network dictionary learning(online cvxNDL). Unlike classical DL algorithms, online cvxNDL is implemented via MF and designed to handle extremely large datasets by virtue of its online nature. Importantly, it enables the interpretation of dictionary elements, which serve as cluster representatives, through convex combinations of real measurements. Moreover, the algorithm can be applied to data with a network structure by incorporating specialized subnetwork sampling techniques. To demonstrate the utility of our approach, we apply cvxNDL on 3D-genome RNAPII ChIA-Drop data with the goal of identifying important long-range interaction patterns (long-range dictionary elements). ChIA-Drop probes higher-order interactions, and produces data in the form of hypergraphs whose nodes represent genomic fragments. The hyperedges represent observed physical contacts. Our hypergraph model analysis has the objective of creating an interpretable dictionary of long-range interaction patterns that accurately represent global chromatin physical contact maps. Through the use of dictionary information, one can also associate the contact maps with RNA transcripts and infer cellular functions. To accomplish the task at hand, we focus on RNAPII-enriched ChIA-Drop data fromDrosophila MelanogasterS2 cell lines. Our results offer two key insights. First, we demonstrate that online cvxNDL retains the accuracy of classical DL (MF) methods while simultaneously ensuring unique interpretability and scalability. Second, we identify distinct collections of proximal and distal interaction patterns involving chromatin elements shared by related processes across different chromosomes, as well as patterns unique to specific chromosomes. To associate the dictionary elements with biological properties of the corresponding chromatin regions, we employ Gene Ontology (GO) enrichment analysis and perform multiple RNA coexpression studies. 
    more » « less
  5. Interactive visualization interfaces enable users to efficiently explore, analyze, and make sense of their datasets. However, as data grows in size, it becomes increasingly challenging to build data interfaces that meet the interface designer's desired latency expectations and resource constraints. Cloud DBMSs, while optimized for scalability, often fail to meet latency expectations, necessitating complex, bespoke query execution and optimization techniques for data interfaces. This involves manually navigating a huge optimization space that is sensitive to interface design and resource constraints, such as client vs server data and compute placement, choosing which computations are done offline vs online, and selecting from a large library of visualization-optimized data structures. This paper advocates for a Physical Visualization Design (PVD) tool that decouples interface design from system design to provide design independence. Given an interfaces underlying data flow, interactions with latency expectations, and resource constraints, PVD checks if the interface is feasible and, if so, proposes and instantiates a middleware architecture spanning the client, server, and cloud DBMS that meets the expectations. To this end, this paper presents Jade, the first prototype PVD tool that enables design independence. Jade proposes an intermediate representation called Diffplans to represent the data flows, develops cost estimation models that trade off between latency guarantees and plan feasibility, and implements an optimization framework to search for the middleware architecture that meets the guarantees. We evaluate Jade on six representative data interfaces as compared to Mosaic and Azure SQL database. We find Jade supports a wider range of interfaces, makes better use of available resources, and can meet a wider range of data, latency, and resource conditions. 
    more » « less