Magneto-ionics has emerged as a promising approach to manipulate magnetic properties, not only by drastically reducing power consumption associated with electric current based devices but also by enabling novel functionalities. To date, magneto-ionics have been mostly explored in oxygen-based systems, while there is a surge of interest in alternative ionic systems. Here we demonstrate highly effective hydroxide-based magneto-ionics in electrodeposited α-Co(OH) 2 films. The α-Co(OH) 2 , which is a room temperature paramagnet, is switched to ferromagnetic after electrolyte gating with a negative voltage. The system is fully, magnetically reversible upon positive voltage application. The origin of the reversible paramagnetic-to-ferromagnetic transition is attributed to the ionic diffusion of hydroxyl groups, promoting the formation of metallic cobalt ferromagnetic regions. Our findings demonstrate one of the lowest turn-on voltages reported for propylene carbonate gated experiments. By tuning the voltage magnitude and sample area we demonstrate that the speed of the induced ionic effect can be drastically enhanced.
more »
« less
Room‐Temperature Solid‐State Nitrogen‐Based Magneto‐Ionics in Co x Mn 1−x N Films
Abstract The increasing energy demand in information technologies requires novel low‐power procedures to store and process data. Magnetic materials, central to these technologies, are usually controlled through magnetic fields or spin‐polarized currents that are prone to the Joule heating effect. Magneto‐ionics is a unique energy‐efficient strategy to control magnetism that can induce large non‐volatile modulation of magnetization, coercivity and other properties through voltage‐driven ionic motion. Recent studies have shown promising magneto‐ionic effects using nitrogen ions. However, either liquid electrolytes or prior annealing procedures are necessary to induce the desired N‐ion motion. In this work, magneto‐ionic effects are voltage‐triggered at room temperature in solid state systems of CoxMn1‐xN films, without the need of thermal annealing. Upon gating, a rearrangement of nitrogen ions in the layers is observed, leading to changes in the co‐existing ferromagnetic and antiferromagnetic phases, which result in substantial increase of magnetization at room temperature and modulation of the exchange bias effect at low temperatures. A detailed correlation between the structural and magnetic evolution of the system upon voltage actuation is provided. The obtained results offer promising new avenues for the utilization of nitride compounds in energy‐efficient spintronic and other memory devices.
more »
« less
- PAR ID:
- 10576794
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 42
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Magneto-ionics, understood as voltage-driven ion transport in magnetic materials, has largely relied on controlled migration of oxygen ions. Here, we demonstrate room-temperature voltage-driven nitrogen transport ( i.e ., nitrogen magneto-ionics) by electrolyte-gating of a CoN film. Nitrogen magneto-ionics in CoN is compared to oxygen magneto-ionics in Co 3 O 4 . Both materials are nanocrystalline (face-centered cubic structure) and show reversible voltage-driven ON-OFF ferromagnetism. In contrast to oxygen, nitrogen transport occurs uniformly creating a plane-wave-like migration front, without assistance of diffusion channels. Remarkably, nitrogen magneto-ionics requires lower threshold voltages and exhibits enhanced rates and cyclability. This is due to the lower activation energy for ion diffusion and the lower electronegativity of nitrogen compared to oxygen. These results may open new avenues in applications such as brain-inspired computing or iontronics in general.more » « less
-
Abstract The discovery of long-range magnetic ordering in atomically thin materials catapulted the van der Waals (vdW) family of compounds into an unprecedented popularity, leading to potentially important technological applications in magnetic storage and magneto-transport devices, as well as photoelectric sensors. With the potential for the use of vdW materials in space exploration technologies it is critical to understand how the properties of such materials are affected by ionizing proton irradiation. Owing to their robust intra-layer stability and sensitivity to external perturbations, these materials also provide excellent opportunities for studying proton irradiation as a non-destructive tool for controlling their magnetic properties. Specifically, the exfoliable Cr2Si2Te6(CST) is a ferromagnetic semiconductor with the Curie temperature (TC) of ∼32 K. Here, we have investigated the magnetic properties of CST upon proton irradiation as a function of fluence (1 × 1015, 5 × 1015, 1 × 1016, 5 × 1016, and 1 × 1018H+/cm−2) by employing variable-temperature, variable-field magnetization measurements, and detail how the magnetization, magnetic anisotropy vary as a function of proton fluence across the magnetic phase transition. While theTCremains constant as a function of proton fluence, we observed that the saturation magnetization and magnetic anisotropy diverge at the proton fluence of 5 × 1016H+/cm−2, which is prominent in the ferromagnetic phase, in particular.This work demonstrates that proton irradiation is a feasible method for modifying the magnetic properties and local magnetic interactions of vdWs crystals, which represents a significant step forward in the design of future spintronic and magneto-electronic applications.more » « less
-
Abstract Materials with tunable infrared refractive index changes have enabled active metasurfaces for novel control of optical circuits, thermal radiation, and more. Ion‐gel‐gated epitaxial films of the perovskite cobaltite La1−xSrxCoO3−δ(LSCO) with 0.00 ≤x≤ 0.70 offer a new route to significant, voltage‐tuned, nonvolatile refractive index modulation for infrared active metasurfaces, shown here through Kramers–Kronig‐consistent dispersion models, structural and electronic transport characterization, and electromagnetic simulations before and after electrochemical reduction. As‐grown perovskite films are high‐index insulators forx< 0.18 but lossy metals forx> 0.18, due to a percolation insulator‐metal transition. Positive‐voltage gating of LSCO transistors withx> 0.18 reveals a metal‐insulator transition from the metallic perovskite phase to a high‐index (n> 2.5), low‐loss insulating phase, accompanied by a perovskite to oxygen‐vacancy‐ordered brownmillerite transformation at highx. Atx< 0.18, despite nominally insulating character, the LSCO films undergo remarkable refractive index changes to another lower‐index, lower‐loss insulating perovskite state with Δn >0.6. In simulations of plasmonic metasurfaces, these metal‐insulator and insulator‐insulator transitions support significant, varied mid‐infrared reflectance modulation, thus framing electrochemically gated LSCO as a diverse library of room‐temperature phase‐change materials for applications including dynamic thermal imaging, camouflage, and optical memories.more » « less
-
Abstract All‐solid‐state rechargeable sodium (Na)‐ion batteries are promising for inexpensive and high‐energy‐density large‐scale energy storage. In this contribution, new Na solid electrolytes, Na3−yPS4−xClx, are synthesized with a strategic approach, which allows maximum substitution of Cl for S (x= 0.2) without significant compromise of structural integrity or Na deficiency. A maximum conductivity of 1.96 mS cm−1at 25 °C is achieved for Na3.0PS3.8Cl0.2, which is two orders of magnitude higher compared with that of tetragonal Na3PS4(t‐Na3PS4). The activation energy (Ea) is determined to be 0.19 eV. Ab initio molecular dynamics simulations shed light on the merit of maximizing Cl‐doping while maintaining low Na deficiency in enhanced Na‐ion conduction. Solid‐state nuclear magnetic resonance (NMR) characterizations confirm the successful substitution of Cl for S and the resulting change of P oxidation state from 5+ to 4+, which is also verified by spin moment analysis. Ion transport pathways are determined with a tracer‐exchange NMR method. The functional detects that promote Na ‐ion transport are maximized for further improvement in ionic conductivity. Full‐cell performance is demonstrated using Na/Na3.0PS3.8Cl0.2/Na3V2(PO4)3with a reversible capacity of ≈100 mAh g‐1at room temperature.more » « less
An official website of the United States government
