Large language models (LLMs) require alignment to effectively and safely follow user instructions. This process necessitates training an aligned version for every base model, resulting in significant computational overhead. In this work, we propose NUDGING, a simple, training-free algorithm that aligns any base model at inference time using a small aligned model. NUDGING is motivated by recent findings that alignment primarily alters the model’s behavior on a small subset of stylistic tokens (e.g., discourse markers). We find that base models are significantly more uncertain when generating these tokens. Building on this insight, NUDGING employs a small aligned model to generate nudging tokens to guide the base model’s output during decoding when the base model’s uncertainty is high, with only a minor additional inference overhead. We evaluate NUDGING across 3 model families on a diverse range of open-instruction tasks. Without any training, nudging a large base model with a 7×-14× smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. By operating at the token level, NUDGING enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-27b-chat outperforms Llama-2-70b-chat on various tasks. Overall, our work offers a modular and cost-efficient solution to LLM alignment. Our code and demo are available at: https://fywalter.github.io/nudging/.
more »
« less
This content will become publicly available on February 25, 2026
ChatBug: A Common Vulnerability of Aligned LLMs Induced by Chat Templates
Large language models (LLMs) are expected to follow in- structions from users and engage in conversations. Tech- niques to enhance LLMs’ instruction-following capabilities typically fine-tune them using data structured according to a predefined chat template. Although chat templates are shown to be effective in optimizing LLM performance, their impact on safety alignment of LLMs has been less understood, which is crucial for deploying LLMs safely at scale. In this paper, we investigate how chat templates affect safety alignment of LLMs. We identify a common vulnerability, named ChatBug, that is introduced by chat templates. Our key insight to identify ChatBug is that the chat templates provide a rigid format that need to be followed by LLMs, but not by users. Hence, a malicious user may not necessar- ily follow the chat template when prompting LLMs. Instead, malicious users could leverage their knowledge of the chat template and accordingly craft their prompts to bypass safety alignments of LLMs. We study two attacks to exploit the ChatBug vulnerability. Additionally, we demonstrate that the success of multiple existing attacks can be attributed to the ChatBug vulnerability. We show that a malicious user can exploit the ChatBug vulnerability of eight state-of-the- art (SOTA) LLMs and effectively elicit unintended responses from these models. Moreover, we show that ChatBug can be exploited by existing jailbreak attacks to enhance their at- tack success rates. We investigate potential countermeasures to ChatBug. Our results show that while adversarial train- ing effectively mitigates the ChatBug vulnerability, the vic- tim model incurs significant performance degradation. These results highlight the trade-off between safety alignment and helpfulness. Developing new methods for instruction tuning to balance this trade-off is an open and critical direction for future research.
more »
« less
- Award ID(s):
- 2229876
- PAR ID:
- 10577389
- Publisher / Repository:
- The 39th Annual AAAI Conference on Artificial Intelligence
- Date Published:
- Format(s):
- Medium: X
- Location:
- Philadelphia, PA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With the increasing popularity of containerized applications, container registries have hosted millions of repositories that allow developers to store, manage, and share their software. Unfortunately, they have also become a hotbed for adversaries to spread malicious images to the public. In this paper, we present the first in-depth study on the vulnerability of container registries to typosquatting attacks, in which adversaries intentionally upload malicious images with an identification similar to that of a benign image so that users may accidentally download malicious images due to typos. We demonstrate that such typosquatting attacks could pose a serious security threat in both public and private registries as well as across multiple platforms. To shed light on the container registry typosquatting threat, we first conduct a measurement study and a 210-day proof-of-concept exploitation on public container registries, revealing that human users indeed make random typos and download unwanted container images. We also systematically investigate attack vectors on private registries and reveal that its naming space is open and could be easily exploited for launching a typosquatting attack. In addition, for a typosquatting attack across multiple platforms, we demonstrate that adversaries can easily self-host malicious registries or exploit existing container registries to manipulate repositories with similar identifications. Finally, we propose CRYSTAL, a lightweight extension to existing image management, which effectively defends against typosquatting attacks from both container users and registries.more » « less
-
Vehicular Ad-hoc Networks (VANETs) are a crucial component of Cooperative Intelligent Transportation Systems (C-ITS), enabling vehicles to communicate and share vital information to enhance road safety and efficiency. Basic Safety Messages (BSMs), periodically broadcast by vehicles to provide real-time kinematic data, form the foundation of numerous safety applications within VANETs. Ensuring the security of BSMs is paramount, as malicious entities can exploit vulnerabilities to launch attacks that could have catastrophic consequences. In this study, we provide a comprehensive analysis of BSM attacks and detection mechanisms in VANETs. We begin by outlining the system model, security requirements, and attacker models relevant to BSMs. Then, we categorize and describe a range of attacks, from simple position falsification to more sophisticated and evasive techniques, such as the SixPack attack. We also classify existing attack detection methods into machine learning-based, deep learning-based, plausibility and consistency-based, and software-defined networking (SDN)-based mechanisms, analyzing their effectiveness and limitations. Additionally, we highlight the challenges in securing BSMs, such as the trade-off between model accuracy and real-time performance. Future research directions are also discussed. This survey paper serves as a foundational step towards building safe, secure, and reliable cooperative intelligent transportation systems and their associated applications.more » « less
-
Large Language Models (LLMs), such as ChatGPT and Bard, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes the papers into “The Good” (beneficial LLM applications), “The Bad” (offensive applications), and “The Ugly” (vulnerabilities of LLMs and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code security (code vulnerability detection) and data privacy (data confidentiality protection), outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, Research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs’ potential to both bolster and jeopardize cybersecurity.more » « less
-
The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent work has proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM’s output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems. Code is available at https://github.com/shizhouxing/LLM-Detector-Robustnessmore » « less
An official website of the United States government
