skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 2023 IEEE Energy Conversion Congress and Exposition (ECCE)
This paper presents an improved on-state resistance (RDSon) measurement scheme for high and low-side GaN FETs, which is critical for reliable and precise assessment of GaN HEMT power devices’ lifetime and degradation patterns. The proposed circuit is based on an active voltage clamp using Si MOSFET and Schottky and Zener diodes. The proposed circuit features lower parasitic inductances and capacitances by replacing the Si MOSFET with e-mode GaN FET. This modification contributed to much lower ringing and spikes in the voltage and current waveform of both the measurement FET and the DUT. The absence of an embedded body diode in the GaN device in the measurement circuit allows zero reverse recovery operation, making it more viable in high-frequency power converters. This study also provides a detailed design analysis of a bootstrap GaN-based on-state voltage (VDSon) sensing scheme for high-side FETs, useful in multiple converter configurations for in-situ devices’ health monitoring and conditioning. Simulation and experimental results validate the performance and features of the proposed concepts.  more » « less
Award ID(s):
2239966
PAR ID:
10577638
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-1644-5
Format(s):
Medium: X
Location:
Nashville, TN, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequency operating conditions. 
    more » « less
  2. null (Ed.)
    The use of high κ dielectrics lowers the operating voltage in organic field-effect transistors (FETs). Polymer ferroelectrics open the path not just for high κ values but allow processing of the dielectric films via electrical poling. Poled ferroelectric dielectrics in p-type organic FETs was seen to improve carrier mobility and reduce leakage current when compared to unpoled devices using the same dielectric. For n-type FETs, solution-processed ZnO films provide a viable low-cost option. UV–ozone-treated ZnO films was seen to improve the FET performance due to the filling of oxygen vacancies. P-type FETs were fabricated using the ferroelectric polymer poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as the dielectric along with a donor–acceptor polymer based on diketopyrrolopyrrole (DPP-DTT) as the semiconductor layer. The DPP-DTT FETs yield carrier mobilities upwards of 0.4 cm2/Vs and high on/off ratios when the PVDF-TrFE layer is electrically poled. For n-type FETs, UV–ozone-treated sol–gel ZnO films on SiO2 yield carrier mobilities of 10−2 cm2/Vs. DPP-DTT-based p- and ZnO-based n-type FETs were used in a complementary voltage inverter circuit, showing promising characteristic gain. A basic inverter model was used to simulate the inverter characteristics, using parameters from the individual FET characteristics. 
    more » « less
  3. This paper investigates the use of power semiconductor devices in a nine - level cascaded H-bridge (CHB) multilevel inverter topology with an integrated battery energy storage system (BESS) for a 13.8kV medium voltage distribution system. In this topology, the bulky conventional step-up 60 Hz transformer is not used. The purpose of this study is to analyze the use of SiC MOSFET and Si IGBT devices in the inverter system to evaluate their respective performances. SiC MOSFET and Si IGBT switching devices are modeled and characterized using Saber® modeling software. The switching losses, thermal performance, and efficiency of the inverter system are investigated, and measurements are obtained from the simulation. Saber® provides a good capability for characterizing semiconductor models in the real world, with great features of computation. A three-phase SiC power MOSFET-based multilevel CHB inverter prototype is presented for experimental verification. In the investigation, better performances of SiC MOSFET devices are recorded. SiC devices demonstrate promising performance at different switching frequency and temperature ranges. 
    more » « less
  4. Wide band gap (WBG) devices have been widely adopted in numerous industrial applications. In medium voltage applications, multi-level converters are necessary to reduce the voltage stress on power devices, which increases the system control complexity and reduces power density and reliability. High voltage silicon carbide (SiC) MOSFET enables the medium voltage applications with less voltage level, simple control strategy and high power density. Nevertheless, great challenges have been posed on the gate driver design for high voltage SiC MOSFET. Wireless power transfer (WPT) can achieve power conversion with large airgap, which can satisfy the system isolation requirement. Thus, in this article, a WPT based gate driver is designed for the medium voltage SiC MOSFET. The coil is optimized by considering voltage isolation, coupling capacitance, size, and efficiency. Experimental prototype was built and tested to validate the effectiveness of the proposed WPT based gate driver. 
    more » « less
  5. This work presents the modeling and characterization of 10-kV SiC MOSFET modules used for medium-voltage distribution system applications. In addition to the nonlinear junction capacitances of the devices, the model includes the non-linearities present at steady-state like transfer characteristics and the behavior in the Ohmic region, which allows to increase the accuracy of the SiC MOSFET model. Furthermore, the parasitic inductances in the circuit (such as the source inductance shared by the power stage and driver loop and the drain inductance) are considered in the model since it has been demonstrated previously that it influences the total losses. By using the proposed model, the calculated voltage and current transients show a good match with the experimental results. 
    more » « less