Abstract We present early multiwavelength photometric and spectroscopic observations of the Type IIb supernova SN 2024uwq, capturing its shock-cooling emission phase and double-peaked light-curve evolution. Early spectra reveal broad Hα(v ∼ 15,500 km s−1) and HeIP Cygni profiles of similar strengths. Over time the HeIlines increase in strength while the Hαdecreases, consistent with a hydrogen envelope (Menv = 0.7–1.35M⊙) overlying helium-rich ejecta. Analytic modeling of early shock cooling emission and bolometric light analysis constrains the progenitor to a partially stripped star with radiusR = 10–60R⊙, consistent with a blue/yellow supergiant with an initial zero-age main-sequence mass of 12–20M⊙likely stripped via binary interaction. SN 2024uwq occupies a transitional position between compact and extended Type IIb supernovae, highlighting the role of binary mass transfer efficiency in shaping a continuum of stripped-envelope progenitors. Our results underscore the importance of early UV/optical observations to characterize shock breakout signatures critical to map the diversity in evolutionary pathways of massive stars. Upcoming time-domain surveys, including Rubin Observatory’s LSST and UV missions like ULTRASAT and UVEX, will revolutionize our ability to systematically capture these early signatures, probing the full diversity of stripped progenitors and their explosive endpoints.
more »
« less
SN 2023zaw: An Ultrastripped, Nickel-poor Supernova from a Low-mass Progenitor
Abstract We present SN 2023zaw—a subluminous (Mr= −16.7 mag) and rapidly evolving supernova (t1/2,r= 4.9 days), with the lowest nickel mass (≈0.002M⊙) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad Heiand Ca near-infrared emission lines with velocities of ∼10,000−12,000 km s−1. The late-time spectra show prominent narrow Heiemission lines at ∼1000 km s−1, indicative of interaction with He-rich circumstellar material. SN 2023zaw is located in the spiral arm of a star-forming galaxy. We perform radiation-hydrodynamical and analytical modeling of the lightcurve by fitting with a combination of shock-cooling emission and nickel decay. The progenitor has a best-fit envelope mass of ≈0.2M☉and an envelope radius of ≈50R⊙. The extremely low nickel mass and low ejecta mass (≈0.5M⊙) suggest an ultrastripped SN, which originates from a mass-losing low-mass He-star (zero-age main-sequence mass < 10M⊙) in a close binary system. This is a channel to form double neutron star systems, whose merger is detectable with LIGO. SN 2023zaw underscores the existence of a previously undiscovered population of extremely low nickel mass (<0.005M☉) stripped-envelope supernovae, which can be explored with deep and high-cadence transient surveys.
more »
« less
- Award ID(s):
- 2034437
- PAR ID:
- 10578336
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- AAS
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 969
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present optical and near-infrared (NIR) observations of SN 2022crv, a stripped-envelope supernova in NGC 3054, discovered within 12 hr of explosion by the Distance Less Than 40 Mpc Survey. We suggest that SN 2022crv is a transitional object on the continuum between Type Ib supernovae (SNe Ib) and Type IIb supernovae (SNe IIb). A high-velocity hydrogen feature (∼ −20,000 to −16,000 km s−1) was conspicuous in SN 2022crv at early phases, and then quickly disappeared. We find that a hydrogen envelope of ∼10−3M⊙can reproduce the observed behavior of the hydrogen feature. The lack of early envelope cooling emission implies that SN 2022crv had a compact progenitor with an extremely low amount of hydrogen. A nebular spectral analysis shows that SN 2022crv is consistent with the explosion of a He star with a final mass of ∼4.5–5.6M⊙that evolved from a ∼16 to 22M⊙zero-age main-sequence star in a binary system with ∼1.0–1.7M⊙of oxygen finally synthesized in the core. In order to retain such a small amount of hydrogen, the initial orbital separation of the binary system is likely larger than ∼1000R⊙. The NIR spectra of SN 2022crv show a unique absorption feature on the blue side of the Heiline at ∼1.005μm. This is the first time such a feature has been observed in SNe Ib/IIb, and it could be due to Sr II. Further detailed modeling of SN 2022crv can shed light on the progenitor and the origin of the mysterious absorption feature in the NIR.more » « less
-
We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally lowr-band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×1042erg s−1, with total radiated energies on the order of (1 − 10)×1048erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He Iemission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He Ilines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s−1. The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass (Mej) in the range 1 − 3 M⊙with kinetic energies (EKin) of (0.1 − 1)×1050erg. The inferred CSM mass ranges from 0.2 to 1 M⊙. These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors.more » « less
-
We present optical and near-infrared observations of two Type Ibn supernovae (SNe), SN 2018jmt and SN 2019cj. Their light curves have rise times of about ten days, reaching an absolute peak magnitude ofMg(SN 2018jmt) = −19.07 ± 0.37 andMV(SN 2019cj) = −18.94 ± 0.19 mag, respectively. The early-time spectra of SN 2018jmt are dominated by a blue continuum, accompanied by narrow (600−1000 km s−1) He Ilines with the P-Cygni profile. At later epochs, the spectra become more similar to those of the prototypical SN Ibn 2006jc. At early phases, the spectra of SN 2019cj show flash ionisation emission lines of C III, N III, and He IIsuperposed on a blue continuum. These features disappear after a few days, and then the spectra of SN 2019cj evolve similarly to those of SN 2018jmt. The spectra indicate that the two SNe exploded within a He-rich circumstellar medium (CSM) lost by the progenitors a short time before the explosion. We modelled the light curves of the two SNe Ibn to constrain the progenitor and the explosion parameters. The ejecta masses are consistent with either what is expected for a canonical SN Ib (∼2 M⊙) or for a massive Wolf Rayet star (> ∼4 M⊙), with the kinetic energy on the order of 1051erg. The lower limit on the ejecta mass (> ∼2 M⊙) argues against a scenario involving a relatively low-mass progenitor (e.g.MZAMS ∼ 10 M⊙). We set a conservative upper limit of ∼0.1 M⊙for the56Ni masses in both SNe. From the light curve modelling, we determined a two-zone CSM distribution, with an inner, flat CSM component and an outer CSM with a steeper density profile. The physical properties of SN 2018jmt and SN 2019cj are consistent with those expected from the core collapse of relatively massive envelope-stripped stars.more » « less
-
Abstract We present ultraviolet to infrared observations of the extraordinary Type IIn supernova 2023zkd (SN 2023zkd). Photometrically, it exhibits persistent and luminous precursor emission spanning ∼4 yr preceding discovery (Mr ≈ −15 mag, 1500 days in the observer frame), followed by a secondary stage of gradual brightening in its final year. Post-discovery, it exhibits two photometric peaks of comparable brightness (Mr ≲ −18.7 mag andMr ≈ −18.4 mag, respectively) separated by 240 days. Spectroscopically, SN 2023zkd exhibits highly asymmetric and multicomponent Balmer and HeIprofiles that we attribute to ejecta interaction with fast-moving (1000–2000 km s−1) He-rich polar material and slow-moving (∼400 km s−1) equatorially distributed H-rich material. HeIIfeatures also appear during the second light curve peak and evolve rapidly. Shock-driven models fit to the multiband photometry suggest that the event is powered by interaction with ∼5–6M⊙of CSM, with 2–3M⊙associated with each light curve peak, expelled during mass-loss episodes ∼3–4 yr and ∼1–2 yr prior to explosion. The observed precursor emission, combined with the extreme mass-loss rates required to power each light curve peak, favors either super-Eddington accretion onto a black hole or multiple long-lived eruptions from a massive star to luminosities that have not been previously observed. We consider multiple progenitor scenarios for SN 2023zkd, and find that the brightening optical precursor and inferred explosion properties are most consistent with a massive (MZAMS≥ 30M⊙) and partially stripped He star undergoing an instability-induced merger with a black hole companion.more » « less
An official website of the United States government

