Abstract We report on the temperature dependent low energy electron diffraction (LEED) studies of 12 nm epitaxial Sr3Ir2O7(001) thin films. The Debye temperature has been extracted from the temperature-dependence of LEED intensity at elevated temperatures and different electron kinetic energies. For the most surface sensitive LEED, obtained at the lowest electron kinetic energies, the extracted surface Debye temperature is 270 ± 22 K, which is much lower than the 488 ± 40 K Debye temperature obtained using higher electron kinetic energies. Surprisingly, the LEED diffraction intensity, at the lowest electron kinetic energies, increases rather than decreases, with increasing sample temperatures up to about 440 K. This anomalous behavior has been attributed to the reduction of the lattice vibrational amplitudes along the surface normal. This damping of the normal mode vibrations with increasing temperature results from the enhanced electronic screening via thermally activated carriers. This scenario is corroborated by the transport measurement, showing that Sr3Ir2O7is a narrow band Mott insulator with a band gap of about 32 meV. We have identified criteria for finding anomalous scattering behavior in other transition metal oxide systems. 
                        more » 
                        « less   
                    
                            
                            Emergence of a metallic surface state for narrow bandgap Mott insulator Sr 3 Ir 2 O 7 (001) thin films
                        
                    
    
            Abstract We report evidence of a finite density of states at the Fermi level at the surface of epitaxial thin films of the narrow bandgap Mott insulator Sr3Ir2O7(001). The Brillouin zone critical points for Sr3Ir2O7(001) thin films have been determined by a comparison of the band mapping from angle-resolved photoemission spectroscopy and low energy electron diffraction. Angle-resolved x-ray photoemission studies reveal the surface termination of Sr3Ir2O7(001) is Sr–O. The absence of dispersion with photon energy, or changing wave vector along the surface normal, indicates the two-dimensional character of the bands contributing to the density of states close to the Fermi level for Sr3Ir2O7(001) thin films. Thus, the finite density of states at the Fermi level is attributed to surface states or surface resonances. The appearance of a finite density of states at the Fermi level is consistent with the increased conductivity with decreasing film thickness for ultrathin Sr3Ir2O7(001) films. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2044049
- PAR ID:
- 10578997
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 37
- Issue:
- 17
- ISSN:
- 0953-8984
- Format(s):
- Medium: X Size: Article No. 175002
- Size(s):
- Article No. 175002
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract In an effort to reconcile the various interpretations for the cation components of the 2p3/2observed in x-ray photoelectron spectroscopy (XPS) of several spinel oxide materials, the XPS spectra of both spinel alloy nanoparticles and crystalline thin films are compared. We observed that different components of the 2p3/2core level XPS spectra, of these inverse spinel thin films, are distinctly surface and bulk weighted, indicating surface-to-bulk core level shifts in the binding energies. Surface-to-bulk core level shifts in binding energies of Ni and Fe 2p3/2core levels of NiFe2O4thin film are observed in angle-resolved XPS. The ratio between surface-weighted components and bulk-weighted components of the Ni and Fe core levels shows appreciable dependency on photoemission angle, with respect to surface normal. XPS showed that the ferrite nanoparticles NixCo1−xFe2O4(x= 0.2, 0.5, 0.8, 1) resemble the surface of the NiFe2O4thin film. Surface-to-bulk core level shifts are also observed in CoFe2O4and NiCo2O4thin films but not as significantly as in NiFe2O4thin film. Estimates of surface stoichiometry of some spinel oxide nanoparticles and thin films suggested that the apportionment between cationic species present could be farther from expectations for thin films as compared to what is seen with nanoparticles.more » « less
- 
            We report the experimental evidence of evolving lattice distortion in high quality epitaxial orthorhombic SrIrO3(001) thin films fully strained on (001) SrTiO3 substrates. Angle-resolved X-ray photoemission spectroscopy studies show that the surface layer of 5 nm SrIrO3 films is Sr–O terminated, and subsequent layers recover the semimetallic state, with the band structure consistent with an orthorhombic SrIrO3(001) having the lattice constant of the substrate. While there is no band folding in the experimental band structure, additional super-periodicity is evident in low energy electron diffraction measurements, suggesting the emergence of a transition layer with crystal symmetry evolving from the SrTiO3 substrate to the SrIrO3(001) surface. Our study sheds light on the misfit relaxation mechanism in epitaxial SrIrO3 thin films in the orthorhombic phase, which is metastable in bulk.more » « less
- 
            Global perspectives of the bulk electronic structure of URu 2 Si 2 from angle-resolved photoemissionAbstract Previous high-resolution angle-resolved photoemission (ARPES) studies of URu2Si2have characterized the temperature-dependent behavior of narrow-band states close to the Fermi level (EF) at low photon energies near the zone center, with an emphasis on electronic reconstruction due to Brillouin zone folding. A substantial challenge to a proper description is that these states interact with other hole-band states that are generally absent from bulk-sensitive soft x-ray ARPES measurements. Here we provide a more globalk-space context for the presence of such states and their relation to the bulk Fermi surface (FS) topology using synchrotron-based wide-angle and photon energy-dependent ARPES mapping of the electronic structure using photon energies intermediate between the low-energy regime and the high-energy soft x-ray regime. Small-spot spatial dependence,f-resonant photoemission, Si 2pcore-levels, x-ray polarization, surface-dosing modification, and theoretical surface slab calculations are employed to assist identification of bulk versus surface state character of theEF-crossing bands and their relation to specific U- or Si-terminations of the cleaved surface. The bulk FS topology is critically compared to density functional theory (DFT) and to dynamical mean field theory calculations. In addition to clarifying some aspects of the previously measured high symmetry Γ,ZandXpoints, incommensurate 0.6a* nested Fermi-edge states located alongZ–N–Zare found to be distinctly different from the DFT FS prediction. The temperature evolution of these states aboveTHO, combined with a more detailed theoretical investigation of this region, suggests a key role of theN-point in the hidden order transition.more » « less
- 
            Abstract In2O3, an n‐type semiconducting transparent transition metal oxide, possesses a surface electron accumulation layer (SEAL) resulting from downward surface band bending due to the presence of ubiquitous oxygen vacancies. Upon annealing In2O3in ultrahigh vacuum or in the presence of oxygen, the SEAL can be enhanced or depleted, as governed by the resulting density of oxygen vacancies at the surface. In this work, an alternative route to tune the SEAL by adsorption of strong molecular electron donors (specifically here ruthenium pentamethylcyclopentadienyl mesitylene dimer, [RuCp*mes]2) and acceptors (here 2,2′‐(1,3,4,5,7,8‐hexafluoro‐2,6‐naphthalene‐diylidene)bis‐propanedinitrile, F6TCNNQ) is demonstrated. Starting from an electron‐depleted In2O3surface after annealing in oxygen, the deposition of [RuCp*mes]2restores the accumulation layer as a result of electron transfer from the donor molecules to In2O3, as evidenced by the observation of (partially) filled conduction sub‐bands near the Fermi level via angle‐resolved photoemission spectroscopy, indicating the formation of a 2D electron gas due to the SEAL. In contrast, when F6TCNNQ is deposited on a surface annealed without oxygen, the electron accumulation layer vanishes and an upward band bending is generated at the In2O3surface due to electron depletion by the acceptor molecules. Hence, further opportunities to expand the application of In2O3in electronic devices are revealed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
