Abstract The reorganization of the Atlantic meridional overturning circulation (AMOC) is often associated with changes in Earth’s climate. These AMOC changes are communicated to the Indo-Pacific basins via wave processes and induce an overturning circulation anomaly that opposes the Atlantic changes on decadal to centennial time scales. We examine the role of this transient, interbasin overturning response, driven by an AMOC weakening, both in an ocean-only model with idealized geometry and in a coupled CO 2 quadrupling experiment, in which the ocean warms on two distinct time scales: a fast decadal surface warming and a slow centennial subsurface warming. We show that the transient interbasin overturning produces a zonal heat redistribution between the Atlantic and Indo-Pacific basins. Following a weakened AMOC, an anomalous northward heat transport emerges in the Indo-Pacific, which substantially compensates for the Atlantic southward heat transport anomaly. This zonal heat redistribution manifests as a thermal interbasin seesaw between the high-latitude North Atlantic and the subsurface Indo-Pacific and helps to explain why Antarctic temperature records generally show more gradual changes than the Northern Hemisphere during the last glacial period. In the coupled CO 2 quadrupling experiment, we find that the interbasin heat transport due to a weakened AMOC contributes substantially to the slow centennial subsurface warming in the Indo-Pacific, accounting for more than half of the heat content increase and sea level rise. Thus, our results suggest that the transient interbasin overturning circulation is a key component of the global ocean heat budget in a changing climate.
more »
« less
Substantial Warming of the Atlantic Ocean in CMIP6 Models
Abstract The storage of anthropogenic heat in oceans is geographically inhomogeneous, leading to differential warming rates among major ocean basins with notable regional climate impacts. Our analyses of observation-based datasets show that the average warming rate of 0–2000-m Atlantic Ocean since 1960 is nearly threefold stronger than that of the Indo-Pacific Oceans. This feature is robustly captured by historical simulations of phase 6 of Coupled Model Intercomparison Project (CMIP6) and is projected to persist into the future. In CMIP6 simulations, the ocean heat uptake through surface heat fluxes plays a central role in shaping the interbasin warming contrasts. In addition to the slowdown of the Atlantic meridional overturning circulation as stressed in some existing studies, alterations of atmospheric conditions under greenhouse warming are also essential for the increased surface heat flux into the North Atlantic. Specifically, the reduced anthropogenic aerosol concentration in the North Atlantic since the 1980s has been favorable for the enhanced Atlantic Ocean heat uptake in CMIP6 models. Another previously overlooked factor is the geographic shape of the Atlantic Ocean which is relatively wide in midlatitudes and narrow in low latitudes, in contrast to that of the Indo-Pacific Oceans. Combined with the poleward migration of atmospheric circulations, which leads to the meridional pattern of surface heat uptake with broadly enhanced heat uptake in midlatitude oceans due to reduced surface wind speed and cloud cover, the geographic shape effect renders a higher basin-average heat uptake in the Atlantic.
more »
« less
- Award ID(s):
- 2048336
- PAR ID:
- 10579543
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 37
- Issue:
- 11
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- 3073 to 3091
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biomass burning aerosol (BBA) emissions in the Coupled Model Intercomparison Project phase 6 (CMIP6) historical forcing fields have enhanced temporal variability during the years 1997–2014 compared to earlier periods. Recent studies document that the corresponding inhomogeneous shortwave forcing over this period can cause changes in clouds, permafrost, and soil moisture, which contribute to a net terrestrial Northern Hemisphere warming relative to earlier periods. Here, we investigate the ocean response to the hemispherically asymmetric warming, using a 100-member ensemble of the Community Earth System Model version 2 Large Ensemble forced by two different BBA emissions (CMIP6 default and temporally smoothed over 1990–2020). Differences between the two subensemble means show that ocean temperature anomalies occur during periods of high BBA variability and subsequently persist over multiple decades. In the North Atlantic, surface warming is efficiently compensated for by decreased northward oceanic heat transport due to a slowdown of the Atlantic meridional overturning circulation. In the North Pacific, surface warming is compensated for by an anomalous cross-equatorial cell (CEC) that reduces northward oceanic heat transport. The heat that converges in the South Pacific through the anomalous CEC is shunted into the subsurface and contributes to formation of long-lasting ocean temperature anomalies. The anomalous CEC is maintained through latitude-dependent contributions from narrow western boundary currents and basinwide near-surface Ekman transport. These results indicate that interannual variability in forcing fields may significantly change the background climate state over long time scales, presenting a potential uncertainty in CMIP6-class climate projections forced without interannual variability.more » « less
-
Abstract Most oceans over the globe have experienced surface warming during the past century, but the subpolar Atlantic is quite otherwise. The sea surface temperature cooling trend to the south of Greenland, known as the North Atlantic Warming Hole, has raised debate over whether it is driven by the slowing of the Atlantic Meridional Overturning Circulation. Here we use observations as a benchmark and climate models as a tool to demonstrate that only models simulating a weakened historical Atlantic overturning can broadly reproduce the observed cooling and freshening in the warming hole region. This, in turn, indicates that the realistic Atlantic overturning slowed between 1900 and 2005, at a rate of −1.01 to −2.97 Sv century−1(1 Sv = 106 m3 s−1), according to a sea-surface-temperature-based fingerprint index estimate. Particularly, the Atlantic overturning slowdown causes an oceanic heat transport divergence across the subpolar North Atlantic, which, while partially offset by enhanced ocean heat uptake, results in cooling over the warming hole region.more » « less
-
null (Ed.)Abstract Climate models consistently project (i) a decline in the formation of North Atlantic Deep Water (NADW) and (ii) a strengthening of the Southern Hemisphere westerly winds in response to anthropogenic greenhouse gas forcing. These two processes suggest potentially conflicting tendencies of the Atlantic meridional overturning circulation (AMOC): a weakening AMOC due to changes in the North Atlantic but a strengthening AMOC due to changes in the Southern Ocean. Here we focus on the transient evolution of the global ocean overturning circulation in response to a perturbation to the NADW formation rate. We propose that the adjustment of the Indo-Pacific overturning circulation is a critical component in mediating AMOC changes. Using a hierarchy of ocean and climate models, we show that the Indo-Pacific overturning circulation provides the first response to AMOC changes through wave processes, whereas the Southern Ocean overturning circulation responds on longer (centennial to millennial) time scales that are determined by eddy diffusion processes. Changes in the Indo-Pacific overturning circulation compensate AMOC changes, which allows the Southern Ocean overturning circulation to evolve independently of the AMOC, at least over time scales up to many decades. In a warming climate, the Indo-Pacific develops an overturning circulation anomaly associated with the weakening AMOC that is characterized by a northward transport close to the surface and a southward transport in the deep ocean, which could effectively redistribute heat between the basins. Our results highlight the importance of interbasin exchange in the response of the global ocean overturning circulation to a changing climate.more » « less
-
Abstract Deep convection associated with large-scale tropical atmospheric circulations governs tropical precipitation. Under anthropogenic warming, the weakened Walker and Hadley circulations alter tropical rainfall. Ocean circulations are also expected to change due to global warming, impacting tropical atmospheric circulation systems. From the perspective of ocean heat uptake, we investigate how ocean circulation change modulates tropical atmospheric circulation and vertical motion under CO2warming by comparing fully coupled and slab-ocean simulations. We find that the slowed South Equatorial Current and subtropical cells in the Pacific induce anomalous advective warming, reducing ocean heat uptake in the central-western tropical Pacific. This, combined with increased downward radiation at the top of atmosphere and horizontal moisture advection, escalates the moisture static energy in the air column and promotes ascent in this region, shifting the Pacific Walker circulation eastward and strengthening the Pacific Hadley circulation. Across the tropical Indian Ocean, ocean heat uptake shows a dipole-like change, increasing in the eastern Indian Ocean and seas surrounding marine continents while decreasing in the western Indian Ocean. The former ocean heat uptake increase is triggered by anomalous oceanic vertical advective cooling, which abates the moisture static energy in the air column and inhibits the ascent in the area. The latter ocean heat uptake decrease is prompted by anomalous oceanic advective warming from both horizontal and vertical directions, which enhances the moisture static energy in the air column, resulting in anomalous upward motions. Over most of the tropics, ocean dynamics help attenuate the strengthening of the gross moist stability due to CO2increase, thereby promoting ascent or weakening descent in the atmosphere. Significance StatementLarge-scale tropical atmospheric circulations are expected to weaken as a result of global warming, having a significant impact on tropical precipitation. Because the atmosphere and oceans are inextricably linked, any subtle change in one can affect the other. For this reason, it is critical to understand the role of ocean circulation change in steering the response of large-scale tropical atmospheric circulation to anthropogenic warming. This study approaches the aforementioned scientific question from the novel perspective of ocean heat uptake. It demonstrates how changes in ocean circulation affect heat uptake over tropical oceans, modifying vertical motion and the Walker and Hadley cells in the tropical atmosphere in a warming climate.more » « less
An official website of the United States government

