We say a null-homologous knot in a -manifold has Property G, if the Thurston norm and fiberedness of the complement of is preserved under the zero surgery on . In this paper, we will show that, if the smooth -genus of (in a certain homology class) in , where is a rational homology sphere, is smaller than the Seifert genus of , then has Property G. When the smooth -genus is , can be taken to be any closed, oriented -manifold.
more »
« less
Cubic fourfolds with an involution
There are three types of involutions on a cubic fourfold; two of anti-symplectic type, and one symplectic. Here we show that cubics with involutions exhibit the full range of behaviour in relation to rationality conjectures. Namely, we show a general cubic fourfold with a symplectic involution has no associated surface and is conjecturely irrational. In contrast, a cubic fourfold with a particular anti-symplectic involution has an associated , and is in fact rational. We show such a cubic is contained in the intersection of all non-empty Hassett divisors; we call such a cubic Hassett maximal. We study the algebraic and transcendental lattices for cubics with an involution both lattice theoretically and geometrically.
more »
« less
- Award ID(s):
- 2101640
- PAR ID:
- 10579596
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society
- ISSN:
- 0002-9947
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
If is an ideal in a Gorenstein ring , and is Cohen-Macaulay, then the same is true for any linked ideal ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal of minors of a generic matrix when . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of . For example, suppose that is the residual intersection of by general quadratic forms in . In this situation we analyze and show that is a self-dual maximal Cohen-Macaulay -module with linear free resolution over . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented.more » « less
-
We show that a compact Riemannian -manifold with strictly convex simply connected boundary and sectional curvature is isometric to a convex domain in a complete simply connected space of constant curvature , provided that on planes tangent to the boundary of . This yields a characterization of strictly convex surfaces with minimal total curvature in Cartan-Hadamard -manifolds, and extends some rigidity results of Greene-Wu, Gromov, and Schroeder-Strake. Our proof is based on a recent comparison formula for total curvature of Riemannian hypersurfaces, which also yields some dual results for .more » « less
-
Let be analytic on with for some constants and and all . We show that the median estimate of under random linear scrambling with points converges at the rate for any . We also get a super-polynomial convergence rate for the sample median of random linearly scrambled estimates, when is bounded away from zero. When has a ’th derivative that satisfies a -Hölder condition then the median of means has error for any , if as . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number.more » « less
-
Motivated by questions asked by Erdős, we prove that any set with positive upper density contains, for any , a sumset , where , …, are infinite. Our proof uses ergodic theory and relies on structural results for measure preserving systems. Our techniques are new, even for the previously known case of .more » « less
An official website of the United States government

