We present Quantum Belief Propagation (QBP), a Quantum Annealing (QA) based decoder design for Low Density Parity Check (LDPC) error control codes, which have found many useful applications in Wi-Fi, satellite communications, mobile cellular systems, and data storage systems. QBP reduces the LDPC decoding to a discrete optimization problem, then embeds that reduced design onto quantum annealing hardware. QBP's embedding design can support LDPC codes of block length up to 420 bits on real state-of-the-art QA hardware with 2,048 qubits. We evaluate performance on real quantum annealer hardware, performing sensitivity analyses on a variety of parameter settings. Our design achieves a bit error rate of 10--8 in 20 μs and a 1,500 byte frame error rate of 10--6 in 50 μs at SNR 9 dB over a Gaussian noise wireless channel. Further experiments measure performance over real-world wireless channels, requiring 30 μs to achieve a 1,500 byte 99.99% frame delivery rate at SNR 15-20 dB. QBP achieves a performance improvement over an FPGA based soft belief propagation LDPC decoder, by reaching a bit error rate of 10--8 and a frame error rate of 10--6 at an SNR 2.5--3.5 dB lower. In terms of limitations, QBP currently cannot realize practical protocol-sized (e.g., Wi-Fi, WiMax) LDPC codes on current QA processors. Our further studies in this work present future cost, throughput, and QA hardware trend considerations.
more »
« less
Erasure Decoding for Quantum LDPC Codes via Belief Propagation with Guided Decimation
Quantum low-density parity-check (LDPC) codes are a promising family of quantum error-correcting codes for fault tolerant quantum computing with low overhead. Decoding quantum LDPC codes on quantum erasure channels has received more attention recently due to advances in erasure conversion for various types of qubits including neutral atoms, trapped ions, and superconducting qubits. Belief propagation with guided decimation (BPGD) decoding of quantum LDPC codes has demonstrated good performance in bit-flip and depolarizing noise. In this work, we apply BPGD decoding to quantum erasure channels. Using a natural modification, we show that BPGD offers competitive performance on quantum erasure channels for multiple families of quantum LDPC codes. Furthermore, we show that the performance of BPGD decoding on erasure channels can sometimes be improved significantly by either adding damping or adjusting the initial channel log-likelihood ratio for bits that are not erased. More generally, our results demonstrate BPGD is an effective general-purpose solution for erasure decoding across the quantum LDPC landscape.
more »
« less
- Award ID(s):
- 2106213
- PAR ID:
- 10579729
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-4103-3
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Location:
- Urbana, IL, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spatially-coupled (SC) codes is a class of convolutional LDPC codes that has been well investigated in classical coding theory thanks to their high performance and compatibility with low-latency decoders. We describe toric codes as quantum counterparts of classical two-dimensional spatially-coupled (2D-SC) codes, and introduce spatially-coupled quantum LDPC (SC-QLDPC) codes as a generalization. We use the convolutional structure to represent the parity check matrix of a 2D-SC code as a polynomial in two indeterminates, and derive an algebraic condition that is both necessary and sufficient for a 2D-SC code to be a stabilizer code. This algebraic framework facilitates the construction of new code families. While not the focus of this paper, we note that small memory facilitates physical connectivity of qubits, and it enables local encoding and low-latency windowed decoding. In this paper, we use the algebraic framework to optimize short cycles in the Tanner graph of 2D-SC hypergraph product (HGP) codes that arise from short cycles in either component code. While prior work focuses on QLDPC codes with rate less than 1/10, we construct 2D-SC HGP codes with small memories, higher rates (about 1/3), and superior thresholds.more » « less
-
Belief propagation (BP) is a classical algorithm that approximates the marginal distribution associated with a factor graph by passing messages between adjacent nodes in the graph. It gained popularity in the 1990’s as a powerful decoding algorithm for LDPC codes. In 2016, Renes introduced a belief propagation with quantum messages (BPQM) and described how it could be used to decode classical codes defined by tree factor graphs that are sent over the classical-quantum pure-state channel. In this work, we propose an extension of BPQM to general binary-input symmetric classical-quantum (BSCQ) channels based on the implementation of a symmetric "paired measurement". While this new paired-measurement BPQM (PMBPQM) approach is suboptimal in general, it provides a concrete BPQM decoder that can be implemented with local operations. Finally, we demonstrate that density evolution can be used to analyze the performance of PMBPQM on tree factor graphs. As an application, we compute noise thresholds of some LDPC codes with BPQM decoding for a class of BSCQ channels.more » « less
-
Quantum low-density parity-check codes are a promising approach to fault-tolerant quantum computation, offering potential advantages in rate and decoding efficiency. Quantum Margulis codes are a new class of QLDPC codes derived from Margulis’ classical LDPC construction via the two-block group algebra framework. We show that quantum Margulis codes, unlike bivariate bicycle codes, which require ordered statistics decoding for effective error correction, can be efficiently decoded using a standard min-sum decoder with linear complexity, when decoded under depolarizing noise. This is attributed to their Tanner graph structure, which does not exhibit group symmetry, thereby mitigating the well-known problem of error degeneracy in QLDPC decoding. To further enhance performance, we propose an algorithm for constructing 2BGA codes with controlled girth, ensuring a minimum girth of 6 or 8, and use it to generate several quantum Margulis codes of length 240 and 642. We validate our approach through numerical simulations, demonstrating that quantum Margulis codes behave significantly better than BB codes in the error floor region, under min-sum decoding.more » « less
-
In this paper, we define a window code to be the portion of a Spatially-coupled low-density parity check (SC-LDPC) code seen by a single iteration of a windowed decoder. We consider the design of SC-LDPC codes for windowed decoding via optimization of the window code. In particular, because iterative decoding is optimal on codes with cycle-free graph representations, we ask fundamental questions about the construction and parameters of cycle-free window codes. We show that it is possible to have an SC-LDPC code with cycles and with cycle-free window codes. We consider the relationship between the distance of the window code and the distance of the SC-LDPC code. Further, we show that SC-LDPC codes with MDS window codes exist, and all such codes are asymptotically bad. This work gives insight into the tradeoffs between window code parameters and performance of the SC-LDPC code.more » « less
An official website of the United States government

