Abstract Fluids influence fault zone strength and the occurrence of earthquakes, slow slip events, and aseismic slip. We introduce an earthquake sequence model with fault zone fluid transport, accounting for elastic, viscous, and plastic porosity evolution, with permeability having a power‐law dependence on porosity. Fluids, sourced at a constant rate below the seismogenic zone, ascend along the fault. While the modeling is done for a vertical strike‐slip fault with 2D antiplane shear deformation, the general behavior and processes are anticipated to apply also to subduction zones. The model produces large earthquakes in the seismogenic zone, whose recurrence interval is controlled in part by compaction‐driven pressurization and weakening. The model also produces a complex sequence of slow slip events (SSEs) beneath the seismogenic zone. The SSEs are initiated by compaction‐driven pressurization and weakening and stalled by dilatant suctions. Modeled SSE sequences include long‐term events lasting from a few months to years and very rapid short‐term events lasting for only a few days; slip is ∼1–10 cm. Despite ∼1–10 MPa pore pressure changes, porosity and permeability changes are small and hence fluid flux is relatively constant except in the immediate vicinity of slip fronts. This contrasts with alternative fault valving models that feature much larger changes in permeability from the evolution of pore connectivity. Our model demonstrates the important role that compaction and dilatancy have on fluid pressure and fault slip, with possible relevance to slow slip events in subduction zones and elsewhere.
more »
« less
Geological fingerprints of deep slow earthquakes: A review of field constraints and directions for future research
Abstract Slow earthquakes, including low-frequency earthquakes, tremor, and geodetically detected slow-slip events, have been widely detected, most commonly at depths of 40–60 km in active subduction zones around the Pacific Ocean Basin. Rocks exhumed from these depths allow us to search for structures that may initiate slow earthquakes. The evidence for high pore-fluid pressures in subduction zones suggests that they may be associated with hydraulic fractures (e.g., veins) and with metamorphic reactions that release or consume water. Loss of continuity and resulting slip at rates exceeding 10−4 m s–1 are required to produce the quasi-seismic signature of low-frequency earthquakes, but the subseismic displacement rates require that the slip rate is slowed by a viscous process, such as low permeability, limiting the rate at which fluid can access a propagating fracture. Displacements during individual low-frequency earthquakes are unlikely to exceed 1 mm, but they need to be more than 0.1 mm and act over an area of ~105 m2 to produce a detectable effective seismic moment. This limits candidate structures to those that have lateral dimensions of ~300 m and move in increments of <1 mm. Possible candidates include arrays of sheeted shear veins showing crack-seal structures; dilational arcs in microfold hinges that form crenulation cleavages; brittle-ductile shear zones in which the viscous component of deformation can limit the displacement rate during slow-slip events; slip surfaces coated with materials, such as chlorite or serpentine, that exhibit a transition from velocity-weakening to velocity-strengthening behavior with increasing slip velocity; and block-in-matrix mélanges.
more »
« less
- Award ID(s):
- 2025105
- PAR ID:
- 10580483
- Publisher / Repository:
- GeoScienceWorld
- Date Published:
- Journal Name:
- Geosphere
- Volume:
- 20
- Issue:
- 4
- ISSN:
- 1553-040X
- Page Range / eLocation ID:
- 981 to 1004
- Subject(s) / Keyword(s):
- slow earthquakes non-volcanic tremor shear zones
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The relative motion of tectonic plates is accommodated at boundary faults through slow and fast ruptures that encompass a wide range of source properties. Near the Parkfield segment of the San Andreas fault, low-frequency earthquakes and slow-slip events take place deeper than most seismicity, at temperature conditions typically associated with stable sliding. However, laboratory experiments indicate that the strength of granitic gouge decreases with increasing temperature above 350°C, providing a possible mechanism for weakening if temperature is to vary dynamically. Here, we argue that recurring low-frequency earthquakes and slow-slip transients at these depths may arise because of shear heating and the temperature dependence of frictional resistance. Recurring thermal instabilities can explain the recurrence pattern of the mid-crustal low-frequency earthquakes and their correlative slip distribution. Shear heating associated with slow slip is sufficient to generate pseudotachylyte veins in host rocks even when fault slip is dominantly aseismic.more » « less
-
Predicting the onset and timing of fault failure is one of the ultimate goals of seismology. However, our current understanding of the earthquake preparation and nucleation process is limited. One direction towards understanding this process is looking at precursory signals preceding large earthquakes. Previous laboratory experiments have studied robust precursory signals, observed as temporal changes in pressure and shear wave velocities during the seismic cycle. The effects of such precursory velocity changes on the seismic cycle are not well understood. We use numerical models to simulate fully-dynamic earthquake cycles in 2D strike-slip fault systems with antiplane geometry, surrounded by a narrow fault-parallel damage zone. By imposing shear wave velocity changes inside fault damage zones, we investigate the effects of these precursors on multiple stages of the seismic cycle, including nucleation, coseismic, postseismic, and interseismic stages. Our modeling results show a wide spectrum of fault-slip behaviors including fast earthquakes, slow-slip events, and variable creep. One primary effect of the imposed velocity precursor is the facilitation of the otherwise slow-slip event to grow into a fully dynamic earthquake. Furthermore, the onset time of these precursors have significant effects on the nucleation phase of the earthquakes, and earlier onset of precursors causes the earthquakes to nucleate earlier with a smaller nucleation size. Our results highlight the importance of short and long-term monitoring of fault zone structures for better assessment of regional seismic hazard.more » « less
-
Abstract Slow slip events in the northern Hikurangi margin of Aotearoa New Zealand occur every 18–24 months and last for several weeks before returning to average convergence rates of around 38 mm/yr. Along this plate boundary, the Hikurangi plateau subducts beneath the overlying Australian plate and slow slip events occur along their plate interface at depths between 2 and 15 km. To explore whether there is a temporal relationship between slow slip events and earthquake occurrence, the Regressive ESTimator automated phase arrival detection and onset estimation algorithm was applied to a data set of continuous waveform data collected by both land and ocean bottom seismometers. This detector uses an autoregressive algorithm with iterative refinement to first detect seismic events and then create a catalog of hypocenters and P and S wave arrival times. Results are compared with an available catalog of manually detected seismic events. The auto‐detector was able to find more than three times the number of events detected by analysts. With our newly assembled data set of automatically detected earthquakes, we were able to determine that there was an increase in the rate of earthquake occurrence during the 2014 slow slip event.more » « less
-
Abstract Megathrust earthquakes and their associated tsunamis cause some of the worst natural disasters. In addition to earthquakes, a wide range of slip behaviors are present at subduction zones, including slow earthquakes that span multiple orders of spatial and temporal scales. Understanding these events may shed light on the stress or strength conditions of the megathrust fault. Out of all types of slow earthquakes, very low frequency earthquakes (VLFEs) are most enigmatic because they are difficult to detect reliably, and the physical nature of VLFEs are poorly understood. Here we show three VLFEs in Cascadia that were dynamically triggered by a 2009 Mw 6.9 Canal de Ballenas earthquake in the Gulf of California. The VLFEs likely locate in between the seismogenic zone and the Cascadia episodic tremor and slip (ETS) zone, including one event with a moment magnitude of 5.7. This is the largest VLFE reported to date, causing clear geodetic signals. Our results show that the Cascadia megathrust fault might slip rapidly at some spots in this gap zone, and such a permissible slip behavior has direct seismic hazard implications for coastal communities and perhaps further inland. Further, the observed seismic sources may represent a new class of slip events, whose characteristics do not fit current understandings of slow or regular earthquakes.more » « less
An official website of the United States government

