Crystallization from the melt is a critical process governing the properties of semi-crystalline polymeric materials. While structural analyses of melting and crystallization transitions in bulk polymers have been widely reported, in contrast, those in thin polymer films on solid supports have been underexplored. Herein, in situ Raman microscopy and self-modeling curve resolution (SMCR) analysis are applied to investigate the temperature-dependent structural changes in poly(ethylene oxide) (PEO) films during melting and crystallization phase transitions. By resolving complex overlapping sets of spectra, SMCR analysis reveals that the thermal transitions of 50 µm thick PEO films comprise two structural phases: an ordered crystalline phase and a disordered amorphous phase. The ordered structure of the crystalline PEO film entirely disappears as the polymer is heated; conversely, the disordered structure of the amorphous PEO film reverts to the ordered structure as the polymer is cooled. Broadening of the Raman bands was observed in PEO films above the melting temperature (67 °C), while sharpening of bands was observed below the crystallization temperature (45 °C). The temperatures at which these spectral changes occurred were in good agreement with differential scanning calorimetry (DSC) measurements, especially during the melting transition. The results illustrate that in situ Raman microscopy coupled with SMCR analysis is a powerful approach for unraveling complex structural changes in thin polymer films during melting and crystallization processes. Furthermore, we show that confocal Raman microscopy opens opportunities to apply the methodology to interrogate the structural features of PEO or other surface-supported polymer films as thin as 2 µm, a thickness regime beyond the reach of conventional thermal analysis techniques.
more »
« less
Nanolite Crystallization in Volcanic Glasses: Insights From High‐Temperature Raman Spectroscopy and Low‐Temperature Rock‐Magnetic Analysis
Abstract High‐temperature Raman spectroscopy offers a cost‐effective alternative to extensive infrastructure and sensitive instrumentation for investigating nanolite crystallization in undercooled volcanic melts, a key area of interest in volcanology. This study examined nanolite formation in anhydrous andesite melts in situ at high temperatures, identifying distinct Raman peaks at 310 and 670 cm−1appearing above the glass transition temperature. The initial amorphous glass remained stable up to 655°C, beyond which Fe‐Ti‐oxide nanolites progressively formed at higher temperatures, as also confirmed by complementary XRD analysis. The evolution of the 310 cm−1peak depends only on the magnitude of nanolite crystallization, while the intensity of the 670 cm−1peak is temperature‐dependent and challenging to observe above 500°C. Complementary low‐temperature rock‐magnetic analyses confirmed Fe‐Ti‐oxide nanocrystallization with nanolites around 20 nm in diameter. The study tested lasers of different wavelengths (from 355 to 514 nm) and found the green laser to be the most effective for collecting spectra at both room and high temperature. However, above 720°C, black body radiation significantly hinders Raman observation with the green laser when using a non‐confocal setup and analyzing poorly transparent samples. If higher temperature measurements are desired, switching to a confocal setup and using lower wavelength lasers should be considered. This research offers a protocol for studying nanolite formation and melt dynamics at high temperatures, providing a foundation for future studies of volcanic processes.
more »
« less
- Award ID(s):
- 2153786
- PAR ID:
- 10581323
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geochemistry, Geophysics, Geosystems
- Volume:
- 26
- Issue:
- 1
- ISSN:
- 1525-2027
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Duluth Complex is a large mafic intrusive system located in northeastern Minnesota emplaced as part of the 1.1-Ga Midcontinent Rift. Several Fe–Ti oxide-bearing ultramafic intrusions are hosted along the Western Margin of the Duluth Complex, and are discordant bodies present in a variety of geometries, hosted in multiple rock types, and dominated by peridotite, pyroxenite, and semi-massive to massive Fe–Ti oxide rock types. Their origin has been debated, and here we present geochemical evidence and modeling that supports a purely magmatic origin for the Titac and Longnose Fe–Ti oxide-bearing ultramafic intrusions. Ilmenite and titanomagnetite textures indicate a protracted cooling process, and δ34S values of sulfides reveal little assimilation of the footwall Virginia Formation, a fine-grained pelitic unit that contains sulfide-rich bands. We model the crystallization of a hypothetical parental magma composition to the host intrusion of Longnose using Rhyolite-MELTS and demonstrate that the accumulation of Fe–Ti oxides in the discordant intrusions cannot be explained by density-driven segregation of crystallized Fe–Ti oxides. Instead, we show that the development of silicate liquid immiscibility, occurring by the unmixing of the silicate melt into conjugate Si- and Fe-rich melts, can result in the effective segregation and transportation of the Fe-rich melt. The Fe-rich melt is ~2 orders of magnitude less viscous than the Si-rich melt, allowing the Fe-rich melt to be more effectively segregated and transported in the mush regime (crystallinities >50%). This suggests that viscosity, in addition to density, plays a significant role in forming the discordant Fe–Ti oxide-bearing ultramafic intrusions. We propose a genetic model that could also be responsible for the Fe–Ti oxide-rich layers or bands that are hosted within the igneous stratigraphy of mafic intrusions of the Duluth Complex.more » « less
-
Abstract In this report, a facile wet chemical method using acetonitrile combined with thermal annealing was used to prepare Li2S‐P2S5(LPS) based glass‐ceramic electrolytes with (1 wt%, 3 wt%, and 5 wt% Ce2S3) and without Ce2S3doping. The crystal structure, ionic conductivity, and chemical stability of Li7P3S11glass‐ceramic electrolytes were examined at varying temperatures (250–350°C). The results indicated that the highest ionic conductivity of 3.15 × 10−4S cm−1for pure Li7P3S11was observed at a temperature of 325°C. By incorporating 1 wt% Ce2S3and subjecting it to a heat treatment at 250°C, the glass ceramic electrolyte attained a remarkable ionic conductivity of 7.7 × 10−4(S cm−1) at 25°C. Furthermore, it exhibited a stable and extensive electrochemical potential range, reaching up to 5 volts when compared to the Li/Li+reference electrode. By tuning the glass transition and crystallization temperature, cerium doping seems to make Li7P3S11more chemically stable, compared to its original 70Li2S‐30P2S5counterpart. According to Raman and X‐ray photoelectron spectroscopy analyses, cerium doping inhibits the decomposition of highly conductive P2S74‐(pyro‐thiophosphate) to PS43−and P2S64−. Doped LPS has a greater crystallinity and more uniform microstructure than pure LPS, according to XRD, Raman spectroscopy, and scanning electron microscopy analysis. Consequently, Li7P2.9Ce0.1S11electrolyte shows great potential as a solid‐state electrolyte for constructing high‐performance sulfide‐based all‐solid‐state batteries.more » « less
-
Abstract Volcanic ash emissions impact atmospheric processes, depositional ecosystems, human health, and global climate. These effects are sensitive to the size and composition of the ash; however, datasets describing the constituent phases over size ranges relevant for atmospheric transport and widely distributed impacts are practically nonexistent. Here, we present results of X-ray diffraction measurements on size-separated fractions of 40 ash samples from VEI 2–6 eruptions. We characterize changes in phase fractions with grainsize, tectonic setting, and whole-rock SiO2. For grainsizes < 45 μm, average fractions of crystalline silica and surface salts increased while glass and iron oxides decreased with respect to the bulk sample. Samples from arc and intraplate settings are distinguished by feldspar and clinopyroxene fractions (determined by different crystallization sequences) which, together with glass, comprise 80–100% of most samples. We provide a dataset to approximate glass-free proportions of major crystalline phases; however, glass fractions are highly variable. To tackle this, we describe regressions between glass and major crystal phase fractions that help constrain the major phase proportions in volcanic ash with limited a priori information. Using our dataset, we find that pore-free ash density is well-estimated as a function of the clinopyroxene + Fe-oxide fraction, with median values of 2.67 ± 0.01 and 2.85 ± 0.03 g/cm3for intraplate and arc samples, respectively. Finally, we discuss effects including atmospheric transport and alteration on modal composition and contextualize our proximal airfall ash samples with volcanic ash cloud properties. Our study helps constrain the atmospheric and environmental budget of the phases in fine volcanic ash and their effect on ash density, integral to refine our understanding of the impact of explosive volcanism on the Earth system from single eruptions to global modeling.more » « less
-
Eighteen successful diffusion couple experiments in 8-component SiO2–TiO2–Al2O3–FeO–MgO–CaO–Na2O–K2O basaltic melts were conducted at 1260°C and 0.5 GPa and at 1500°C and 1.0 GPa. These experiments are combined with previous data at 1350°C and 1.0 GPa (Guo and Zhang, 2018) to study the temperature dependence of multicomponent diffusion in basaltic melts. Effective binary diffusion coefficients of components with monotonic diffusion profiles were extracted and show a strong dependence on their counter-diffusing component even though the average (or interface) compositions are the same. The diffusion matrix at 1260°C was obtained by simultaneously fitting diffusion profiles of all diffusion couple experiments as well as appropriate data from the literature. All features of concentration profiles in both diffusion couples and mineral dissolution are well reproduced by this new diffusion matrix. At 1500°C, only diffusion couple experiments are used to obtain the diffusion matrix. Eigenvectors of the diffusion matrix are used to discuss the diffusion (exchange) mechanism, and eigenvalues characterize the diffusion rate. Diffusion mechanisms at both 1260 and 1500°C are inferred from eigenvectors of diffusion matrices and compared with those at 1350°C reported in Guo and Zhang (2018). There is indication that diffusion eigenvectors in basaltic melts do not depend much on temperature, but complexity is present for some eigenvectors. The two slowest eigenvectors involve the exchange of SiO2 and/or Al2O3 with nonalkalis. The third slowest eigenvector is due to the exchange of divalent oxides with other oxides. The fastest eigenvector is due to the exchange of Na2O with other oxide components. Some eigenvalues differ from each other by less than 1/3, and their eigenvectors are less well defined. We define small difference in eigenvalues as near degeneracy. In strict mathematical degeneracy, eigenvectors are not uniquely defined because any linear combination of two eigenvectors is also an eigenvector. In the case of near degeneracy, more constraints either in terms of higher data quality or more experiments are needed to resolve the eigenvectors. We made a trial effort to generate a set of average eigenvectors, which are assumed to be constant as temperature varies. The corresponding eigenvalues are roughly Arrhenian. Thus, the temperature-dependent diffusion matrix can be roughly predicted. The method is applied to predict experimental diffusion profiles in basaltic melts during olivine and anorthite dissolution at ~1400°C with preliminary success. We further applied our diffusion matrix to investigate multicomponent diffusion during magma mixing in the Bushveld Complex and found such diffusion may result in an increased likelihood of sulfide and Fe-Ti oxide mineralization.more » « less