Mutualisms are mediated by adaptive traits of interacting organisms and play a central role in the ecology and evolution of species. Thousands of plant species possess tiny structures called “domatia” that house mites which protect plants from pests, yet these traits remain woefully understudied. Here, we release a worldwide database of species with mite domatia and provide an evaluation of the phylogenetic and geographic distribution of this mutualistic trait. With >2,500 additions based on digital herbarium scans and published reports, we increased the number of known species with domatia by 27% and, importantly, documented their absence in >4,000 species. We show that mite domatia likely evolved hundreds of times among flowering plants, occurring in an estimated ~10% of woody species representing over a quarter of all angiosperm families. Contrary to classic hypotheses about the evolutionary drivers of mutualism, we find that mite domatia evolved more frequently in temperate regions and in deciduous lineages; this pattern is concordant with a large-scale geographic transition from predominantly ant-based plant defense mutualisms in the tropics to mite-based defense mutualisms in temperate climates. Our data also reveal a pattern of evolutionary convergence in domatia morphology, with tuft-form domatia more likely to evolve in dry temperate habitats and pit domatia more likely to evolve in wet tropical environments. We have shown climate-associated drivers of mite domatia evolution, demonstrating their utility and power as an evolutionarily replicated system for the study of plant defense mutualisms. 
                        more » 
                        « less   
                    
                            
                            Mite Domatia and Associated Mite Density in a North American Eastern Deciduous Forest in Michigan
                        
                    
    
            ABSTRACT Mite–plant defense mutualisms are among the most common defense mutualisms in the world—yet studies providing basic information on their prevalence in plant communities remain rare. Here, we systematically surveyed common woody plants in a North American deciduous forest for the presence of plant–mite mutualistic interactions. We scored 16 common woody species in a wooded natural area for the presence and number of mite domatia—small structures on the underside of plant leaves that are known to house mutualistic mites. We found that 80% of common woody species in the forest had mite domatia, the highest reported percentage of mite domatia in any survey conducted thus far. We paired our survey with a quantification of the number of mites found on each leaf and investigated the relationship between mite domatia and mite abundance within and across species. We found that plants with mite domatia had significantly more mites on their leaves than species that lacked mite domatia, and that plants with more domatia had more mites. Together, our study provides much needed systematic survey data on plant–mite mutualism prevalence in an important plant community and points to northern temperate forests as a promising system to study plant–mite mutualisms in high densities in the future. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2236747
- PAR ID:
- 10584332
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 15
- Issue:
- 4
- ISSN:
- 2045-7758
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract ContextHabitat fragmentation is a leading threat to biodiversity, yet the impacts of fragmentation on most taxa, let alone interactions among those taxa, remain largely unknown. ObjectivesWe studied how three consequences of fragmentation—reduced patch connectivity, altered patch shape, and edge proximity—impact plant-dwelling mite communities and mite-plant-fungus interactions within a large-scale habitat fragmentation experiment. MethodsWe sampled mite communities from the leaves ofQuercus nigra(a plant species that has foliar domatia which harbor fungivorous and predacious mites) near and far from edge within fragments of varying edge-to-area ratio (shape) and connectivity via corridors. We also performed a mite-exclusion experiment across these fragmentation treatments to test the effects of mite presence and fungal hyphal abundance on leaf surfaces. ResultsHabitat edges influenced the abundance and richness of leaf-dwelling mites; plants closer to the edge had higher mite abundance and species richness. Likewise, hyphal counts were higher on leaves near patch edges. Despite both mite and fungal abundance being higher at patch edges, leaf hyphal counts were not impacted by mite abundance on those leaves. Neither patch shape nor connectivity influenced mite abundance, mite species richness, or the influence of mites on leaf surface fungal abundance. ConclusionOur results suggest that mites and foliar fungi may be independently affected by edge-structured environmental gradients, like temperature, rather than trophic effects. We demonstrate that large-scale habitat fragmentation and particularly edge effects can have impacts on multiple levels of microscopic communities, even in the absence of cascading trophic effects.more » « less
- 
            Summary Here, we investigated the molecular genetic basis of mite domatia, structures on the underside of leaves that house mutualistic mites, and intraspecific variation in domatia size inVitis riparia(riverbank grape).Domatia and leaf traits were measured, and the transcriptomes of mite domatia from two genotypes ofV. ripariawith distinct domatia sizes were sequenced to investigate the molecular genetic pathways that regulate domatia development and intraspecific variation in domatia traits.Key trichome regulators as well as auxin and jasmonic acid are involved in domatia development. Genes involved in cell wall biosynthesis, biotic interactions, and molecule transport/metabolism are upregulated in domatia, consistent with their role in domatia development and function.This work is one of the first to date that provides insight into the molecular genetic bases of mite domatia. We identified key genetic pathways involved in domatia development and function, and uncovered unexpected pathways that provide an avenue for future investigation. We also found that intraspecific variation in domatia size inV. ripariaseems to be driven by differences in overall leaf development between genotypes.more » « less
- 
            null (Ed.)Indirect defenses are plant phenotypes that reduce damage by attracting natural enemies of plant pests and pathogens to leaves. Despite their economic and ecological importance, few studies have investigated the genetic underpinnings of indirect defense phenotypes. Here, we present a genome-wide association study of five phenotypes previously determined to increase populations of beneficial (fungivorous and predacious) mites on grape leaves (genus Vitis): leaf bristles, leaf hairs, and the size, density, and depth of leaf domatia. Using a common garden genetic panel of 399 V. vinifera cultivars, we tested for genetic associations of these phenotypes using previously obtained genotyping data from the Vitis9kSNP array. We found one single nucleotide polymorphism (SNP) significantly associated with domatia density. This SNP (Chr5:1160194) is near two genes of interest: Importin Alpha Isoform 1 (VIT_205s0077g01440), involved in downy mildew resistance, and GATA Transcription Factor 8 (VIT_205s0077g01450), involved in leaf shape development. Our findings are among the first to examine the genomic regions associated with ecologically important plant traits that facilitate interactions with beneficial mites, and suggest promising candidate genes for breeding and genetic editing to increase naturally occurring predator-based defenses in grapevines.more » « less
- 
            The South American palm weevil, Rhynchophorus palmarum (Coleoptera: Curculionidae), established in San Diego County, California, USA sometime around 2014. Attached to the motile adults of this destructive palm pest, we identified three species of uropodine mites (Parasitiformes: Uropodina), Centrouropoda n. sp., Dinychus n. sp. and Fuscuropoda marginata. Two of these species, Centrouropoda n. sp. and Dinychus n. sp. are recorded for the first time in the USA and were likely introduced by R. palmarum. Several species of mites, primarily of Uropodina, have previously been recorded as phoretic on Rhynchophorus spp. In this study, we examined 3,035 adult R. palmarum trapped over a 2.5-year period, July 2016 to December 2018, and documented the presence of and species composition of phoretic mites and their relationship with weevil morphometrics (i.e., pronotum length and width). The presence and species composition of mites on weevil body parts changed over the survey period. No mites were found under weevil elytra in 2016 and mite prevalence under elytra increased over 2017–2018 due to an increased abundance of Centrouropoda n. sp per individual beetle. Mite occurrence levels were significantly correlated with reduced pronotum widths of male weevils only. The significance of this finding on male weevil fitness is unknown. Potential implications of phoretic mites on aspects of the invasion biology of R. palmarum are discussed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
