External flows of energy, entropy, and matter can cause sudden transitions in the stability of biological and industrial systems, fundamentally altering their dynamical function. How might we control and design these transitions in chemical reaction networks? Here, we analyze transitions giving rise to complex behavior in random reaction networks subject to external driving forces. In the absence of driving, we characterize the uniqueness of the steady state and identify the percolation of a giant connected component in these networks as the number of reactions increases. When subject to chemical driving (influx and outflux of chemical species), the steady state can undergo bifurcations, leading to multistability or oscillatory dynamics. By quantifying the prevalence of these bifurcations, we show how chemical driving and network sparsity tend to promote the emergence of these complex dynamics and increased rates of entropy production. We show that catalysis also plays an important role in the emergence of complexity, strongly correlating with the prevalence of bifurcations. Our results suggest that coupling a minimal number of chemical signatures with external driving can lead to features present in biochemical processes and abiogenesis.
more »
« less
Noisy deep networks: chaos, multistationarity, and eternal evolution
Abstract We study time-recurrent hierarchical networks that model complex systems in biology, economics, and ecology. These networks resemble real-world topologies, with strongly connected hubs (centers) and weakly connected nodes (satellites). Under natural structural assumptions, we develop a mean-field approach that reduces network dynamics to the central nodes alone. Even in the two-layer case, we establish universal dynamical approximation, demonstrating that these networks can replicate virtually any dynamical behavior by tuning center-satellite interactions. In multilayered networks, this property extends further, enabling the approximation of families of structurally stable systems and the emergence of complex bifurcations, such as pitchfork bifurcations under strong inter-satellite interactions. We also show that internal noise within nodes moderates bifurcations, leading to noise-induced phase transitions. A striking effect emerges where central nodes may lose control over satellites, akin to transitions observed in perceptrons studied by E. Gardner-relevant in complex combinatorial problems. Finally, we examine the networks’ responses to stress, demonstrating that increasing complexity during evolution is crucial for long-term viability.
more »
« less
- Award ID(s):
- 2102906
- PAR ID:
- 10584478
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Complexity
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2632-072X
- Format(s):
- Medium: X Size: Article No. 025008
- Size(s):
- Article No. 025008
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The human brain is a complex system whose function depends on interactions between neurons and their ensembles across scales of organization. These interactions are restricted by anatomical and energetic constraints, and facilitate information processing and integration in response to cognitive demands. In this work, we considered the brain as a closed loop dynamic system under sparse feedback control. This controller design considered simultaneously control performance and feedback (communication) cost. As proof of principle, we applied this framework to structural and functional brain networks. Under high feedback cost only a small number of highly connected network nodes were controlled, which suggests that a small subset of brain regions may play a central role in the control of neural circuits, through a trade‐off between performance and communication cost.more » « less
-
Spatial systems with heterogeneities are ubiquitous in nature, from precipitation, temperature, and soil gradients controlling vegetation growth to morphogen gradients controlling gene expression in embryos. Such systems, generally described by nonlinear dynamical systems, often display complex parameter dependence and exhibit bifurcations. The dynamics of heterogeneous spatially extended systems passing through bifurcations are still relatively poorly understood, yet recent theoretical studies and experimental data highlight the resulting complex behaviors and their relevance to real-world applications. We explore the consequences of spatial heterogeneities passing through bifurcations via two examples strongly motivated by applications. These model systems illustrate that studying heterogeneity-induced behaviors in spatial systems is crucial for a better understanding of ecological transitions and functional organization in brain development.more » « less
-
Key features of biological activity can often be captured by transitions between a finite number of semi-stable states that correspond to behaviors or decisions. We present here a broad class of dynamical systems that are ideal for modeling such activity. The models we propose are chaotic heteroclinic networks with nontrivial intersections of stable and unstable manifolds. Due to the sensitive dependence on initial conditions, transitions between states are seemingly random. Dwell times, exit distributions, and other transition statistics can be built into the model through geometric design and can be controlled by tunable parameters. To test our model’s ability to simulate realistic biological phenomena, we turned to one of the most studied organisms, C. elegans, well known for its limited behavioral states. We reconstructed experimental data from two laboratories, demonstrating the model’s ability to quantitatively reproduce dwell times and transition statistics under a variety of conditions. Stochastic switching between dominant states in complex dynamical systems has been extensively studied and is often modeled as Markov chains. As an alternative, we propose here a new paradigm, namely, chaotic heteroclinic networks generated by deterministic rules (without the necessity for noise). Chaotic heteroclinic networks can be used to model systems with arbitrary architecture and size without a commensurate increase in phase dimension. They are highly flexible and able to capture a wide range of transition characteristics that can be adjusted through control parameters.more » « less
-
Complex systems are characterized by intricate interactions between entities that evolve dynamically over time. Accurate inference of these dynamic relationships is crucial for understanding and predicting system behavior. In this paper, we propose Regulatory Temporal Interaction Network Inference (RiTINI) for inferring time-varying interaction graphs in complex systems using a novel combination of space-and-time graph attentions and graph neural ordinary differential equations (ODEs). RiTINI leverages time-lapse signals on a graph prior, as well as perturbations of signals at various nodes in order to effectively capture the dynamics of the underlying system. This approach is distinct from traditional causal inference networks, which are limited to inferring acyclic and static graphs. In contrast, RiTINI can infer cyclic, directed, and time-varying graphs, providing a more comprehensive and accurate representation of complex systems. The graph attention mechanism in RiTINI allows the model to adaptively focus on the most relevant interactions in time and space, while the graph neural ODEs enable continuous-time modeling of the system’s dynamics. We evaluate RiTINI’s performance on simulations of dynamical systems, neuronal networks, and gene regulatory networks, demonstrating its state-of-the-art capability in inferring interaction graphs compared to previous methods.more » « less
An official website of the United States government
