In distributed multiplayer games, it can be difficult to communicate strategic information for planning game moves and player interactions. Often, players spend extra time communicating, reducing their engagement in the game. Visual annotations in game maps and in the gameworld can address this problem and result in more efficient player communication. We studied the impact of real-time feedback on planning annotations, specifically two different annotation types, in a custom-built, third-person, multiplayer game and analyzed their effects on player performance, experience, workload, and annotation use. We found that annotations helped engage players in collaborative planning, which reduced frustration, and shortened goal completion times. Based on these findings, we discuss how annotating in virtual game spaces enables collaborative planning and improves team performance.
more »
« less
Human-Agent Cooperation in Games under Incomplete Information through Natural Language Communication
Developing autonomous agents that can strategize and cooperate with humans under information asymmetry is challenging without effective communication in natural language. We introduce a shared-control game, where two players collectively control a token in alternating turns to achieve a common objective under incomplete information. We formulate a policy synthesis problem for an autonomous agent in this game with a human as the other player. To solve this problem, we propose a communication-based approach comprising a language module and a planning module. The language module translates natural language messages into and from a finite set of flags, a compact representation defined to capture player intents. The planning module leverages these flags to compute a policy using an asymmetric information-set Monte Carlo tree search with flag exchange algorithm we present. We evaluate the effectiveness of this approach in a testbed based on Gnomes at Night, a search-and-find maze board game. Results of human subject experiments show that communication narrows the information gap between players and enhances human-agent cooperation efficiency with fewer turns.
more »
« less
- Award ID(s):
- 2211432
- PAR ID:
- 10585023
- Publisher / Repository:
- International Joint Conferences on Artificial Intelligence Organization
- Date Published:
- ISBN:
- 978-1-956792-04-1
- Page Range / eLocation ID:
- 7833 to 7841
- Format(s):
- Medium: X
- Location:
- Jeju, South Korea
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We study the following problem, which to our knowledge has been addressed only partially in the literature and not in full generality. An agent observes two players play a zero-sum game that is known to the players but not the agent. The agent observes the actions and state transitions of their game play, but not rewards. The players may play either op-timally (according to some Nash equilibrium) or according to any other solution concept, such as a quantal response equilibrium. Following these observations, the agent must recommend a policy for one player, say Player 1. The goal is to recommend a policy that is minimally exploitable un-der the true, but unknown, game. We take a Bayesian ap-proach. We establish a likelihood function based on obser-vations and the specified solution concept. We then propose an approach based on Markov chain Monte Carlo (MCMC), which allows us to approximately sample games from the agent’s posterior belief distribution. Once we have a batch of independent samples from the posterior, we use linear pro-gramming and backward induction to compute a policy for Player 1 that minimizes the sum of exploitabilities over these games. This approximates the policy that minimizes the ex-pected exploitability under the full distribution. Our approach is also capable of handling counterfactuals, where known modifications are applied to the unknown game. We show that our Bayesian MCMC-based technique outperforms two other techniques—one based on the equilibrium policy of the maximum-probability game and the other based on imitation of observed behavior—on all the tested stochastic game envi-ronments.more » « less
-
Dungeons & Dragons (D&D) is a tabletop roleplaying game with complex natural language interactions between players and hidden state information. Recent work has shown that large language models (LLMs) that have access to state information can generate higher quality game turns than LLMs that use dialog history alone. However, previous work used game state information that was heuristically created and was not a true gold standard game state. We present FIREBALL, a large dataset containing nearly 25,000 unique sessions from real D&D gameplay on Discord with true game state info. We recorded game play sessions of players who used the Avrae bot, which was developed to aid people in playing D&D online, capturing language, game commands and underlying game state information. We demonstrate that FIREBALL can improve natural language generation (NLG) by using Avrae state information, improving both automated metrics and human judgments of quality. Additionally, we show that LLMs can generate executable Avrae commands, particularly after finetuning.more » « less
-
Consider a set of n players. We suppose that each game involves two players, that there is some unknown player who wins each game it plays with a probability greater than 1/2, and that our objective is to determine this best player. Under the requirement that the policy employed guarantees a correct choice with a probability of at least some specified value, we look for a policy that has a relatively small expected number of games played before decision. We consider this problem both under the assumption that the best player wins each game with a probability of at least some specified value >1/2, and under a Bayesian assumption that the probability that player i wins a game against player j is its value divided by the sum of the values, where the values are the unknown values of n independent and identically distributed exponential random variables. In the former case, we propose a policy where chosen pairs play a match that ends when one of them has had a specified number of wins more than the other; in the latter case, we propose a Thompson sampling type rule.more » « less
-
In strong story experience management problems, an automated storytelling agent balances player autonomy with narrative structure in the context of an interactive story game world. However, it is possible for the game world to get softlocked in states outside narrative structures specified by the game designer. These states are called dead-ends. In this paper, we revisit adversarial strong story experience management, a framing of the experience management problem that models interactive storytelling as an adversarial game where dead-ends are losses. This framing is adversarial against narrative softlocks, not necessarily the player. We present a novel agent based on adversarial search and deep reinforcement learning, which is trained to avoid dead-ends while preserving player autonomy. We compare our approach to a reactive, narrative plan-based mediation system on a test set of games compatible with current narrative planning techniques. We show that our adversarial architecture outperforms narrative mediation on a suite of dead-end metrics during game trace and breadth-first tests of state transition system exploration, using classical and intentional planning domains.more » « less
An official website of the United States government

