Abstract Disturbances in ionospheric Total Electron Content (dTEC) with frequencies of 1–100 mHz can be driven from above by processes in the magnetosphere and below by processes on the Earth's surface and lower atmosphere. Past studies showed the potential of dTEC as a diagnostic of magnetospheric Ultra Low Frequency (ULF) wave activity and demonstrated that ULF dTEC can impact space weather by, for example, changing ionospheric conductance. However, most past work has focused on single event studies, lacked magnetospheric context, or used sampling rates too low to capture most ULF waves. Here, we perform a statistical study using Time History of Events and Macrsoscale Interactions during Substorms (THEMIS) satellite conjunctions with a ground‐based magnetometer and Global Navigation Satellite System (GNSS) receiver at 65° magnetic latitude. We find that magnetospheric ULF waves generate dTEC variations across the broad range of frequencies examined in this study (2–50 mHz), and that ULF dTEC wave power is correlated with Kp, AE, solar wind speed, and magnetic field wave power observed in the magnetosphere and on the ground. We further find that magnetospheric ULF waves generate dTEC amplitudes up to TECU ( background), with the largest amplitudes occurring during geomagnetically active conditions, at frequencies below 7 mHz, and at local times near midnight. We finally discuss the implications of our results for magnetosphere‐ionosphere coupling and remote sensing techniques related to ULF waves.
more »
« less
Magnetospheric Control of Ionospheric TEC Perturbations via Whistler‐Mode and ULF Waves
Abstract The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra‐low‐frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground‐based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF‐modulated whistler‐mode waves. We observed peak‐to‐peak dTEC amplitudes reaching 0.5 TECU (1 TECU is equal to electrons/) with modulations spanning scales of 5–100 km. The cross‐correlation between our modeled and observed dTEC reached 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler‐mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high‐latitude dTEC generation from magnetospheric wave‐induced precipitation, addressing a significant gap in current physics‐based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere‐ionosphere coupling via ULF waves.
more »
« less
- Award ID(s):
- 1935110
- PAR ID:
- 10587085
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 5
- Issue:
- 6
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Energetic electron precipitation from the equatorial magnetosphere into the atmosphere plays an important role in magnetosphere‐ionosphere coupling: precipitating electrons alter ionospheric properties, whereas ionospheric outflows modify equatorial plasma conditions affecting electromagnetic wave generation and energetic electron scattering. However, ionospheric measurements cannot be directly related to wave and energetic electron properties measured by high‐altitude, near‐equatorial spacecraft, due to large mapping uncertainties. We aim to resolve this by projecting low‐altitude measurements of energetic electron precipitation by ELFIN CubeSats onto total electron content (TEC) maps serving as a proxy for ionospheric density structures. We examine three types of precipitation on the nightside: precipitation of <200 keV electrons in the plasma sheet, bursty precipitation of <500 keV electrons by whistler‐mode waves, and relativistic (>500 keV) electron precipitation by EMIC waves. All three types of precipitation show distinct features in TEC horizontal gradients, and we discuss possible implications of these features.more » « less
-
Abstract Whistler mode waves scatter energetic electrons, causing them to precipitate into the Earth's atmosphere. While the interactions between whistler mode waves and electrons are well understood, the global distribution of electron precipitation driven by whistler mode waves needs futher investigations. We present a two‐stage method, integrating neural networks and quasi‐linear theory, to simulate global electron precipitation driven by whistler mode waves. By applying this approach to the 17 March 2013 geomagnetic storm event, we reproduce the rapidly varying precipitation pattern over various phases of the storm. Then we validate our simulation results with POES/MetOp satellite observations. The precipitation pattern is consistent between simulations and observations, suggesting that most of the observed electron precipitation can be attributed to scattering by whistler mode waves. Our results indicate that chorus waves drive electron precipitation over the premidnight‐to‐afternoon sector during the storm main phase, with simulated peak energy fluxes of 20 erg/cm2/s and characteristic energies of 10–50 keV. During the recovery phase, plume hiss in the afternoon sector can have a comparable or stronger effect than chorus, with peak fluxes of ∼1 erg/cm2/s and characteristic energies between 10 and 200 keV. This study highlights the importance of integrating physics‐based and deep learning approaches to model the complex dynamics of electron precipitation driven by whistler mode waves.more » « less
-
null (Ed.)Variations of vertical atmospheric electric field E z have been attributed mainly to meteorological processes. On the other hand, the theory of electromagnetic waves in the atmosphere, between the bottom ionosphere and earth’s surface, predicts two modes, magnetic H (TE) and electric E (TH) modes, where the E-mode has a vertical electric field component, E z . Past attempts to find signatures of ULF (periods from fractions to tens of minutes) disturbances in E z gave contradictory results. Recently, study of ULF disturbances of atmospheric electric field became feasible thanks to project GLOCAEM, which united stations with 1 sec measurements of potential gradient. These data enable us to address the long-standing problem of the coupling between atmospheric electricity and space weather disturbances at ULF time scales. Also, we have reexamined results of earlier balloon-born electric field and ground magnetic field measurements in Antarctica. Transmission of storm sudden commencement (SSC) impulses to lower latitudes was often interpreted as excitation of the electric TH 0 mode, instantly propagating along the ionosphere–ground waveguide. According to this theoretical estimate, even a weak magnetic signature of the E-mode ∼1 nT must be accompanied by a burst of E z well exceeding the atmospheric potential gradient. We have examined simultaneous records of magnetometers and electric field-mills during >50 SSC events in 2007–2019 in search for signatures of E-mode. However, the observed E z disturbance never exceeded background fluctuations ∼10 V/m, much less than expected for the TH 0 mode. We constructed a model of the electromagnetic ULF response to an oscillating magnetospheric field-aligned current incident onto the realistic ionosphere and atmosphere. The model is based on numerical solution of the full-wave equations in the atmospheric-ionospheric collisional plasma, using parameters that were reconstructed using the IRI model. We have calculated the vertical and horizontal distributions of magnetic and electric fields of both H- and E-modes excited by magnetospheric field-aligned currents. The model predicts that the excitation rate of the E-mode by magnetospheric disturbances is low, so only a weak E z response with a magnitude of ∼several V/m will be produced by ∼100 nT geomagnetic disturbance. However, at balloon heights (∼30 km), electric field of the E-mode becomes dominating. Predicted amplitudes of horizontal electric field in the atmosphere induced by Pc5 pulsations and travelling convection vortices, about tens of mV/m, are in good agreement with balloon electric field and ground magnetometer observations.more » « less
-
In this study, we present simultaneous multi-point observations of magnetospheric oscillations on a time scale of tens of minutes (forced-breathing mode) and modulated whistler-mode chorus waves, associated with concurrent energetic electron precipitation observed through enhanced BARREL X-rays. Similar fluctuations are observed in X-ray signatures and the compressional component of magnetic oscillations, spanning from ∼9 to 12 h in MLT and 5 to 11 inLshell. Such magnetospheric oscillations covering an extensive region in the pre-noon sector have been suggested to play a potential role in precipitating energetic electrons by either wave scattering or loss cone modulation, showing a high correlation with the enhancement in X-rays. In this event, the correlation coefficients between chorus waves (smoothed over 8 min), ambient magnetic field oscillations and X-rays are high. We perform an in-depth quasi-linear modeling analysis to evaluate the role of magnetic field oscillations in modulating energetic electron precipitation in the Earth’s magnetosphere through modulating whistler-mode chorus wave amplitude, resonance condition between chorus waves and electrons, as well as loss cone size. Model results further show that the modulation of chorus wave amplitude plays a dominant role in modulating the electron precipitation. However, the effect of the modulation in the resonant energy between chorus waves and energetic electrons due to the background magnetic field oscillations cannot be neglected. The bounce loss cone modulation, affected by the magnetic oscillations, has little influence on the electron precipitation modulation. Our results show that the low frequency magnetospheric oscillations could play a significant role in modulating the electron precipitation through modulating chorus wave intensity and the resonant energy between chorus waves and electron.more » « less
An official website of the United States government

